Small-scale turbulence in trade-wind atmospheric boundary layer in EUREC4A observations

Jakub L. Nowak

UNIVERSITY | INSTITUTE of Warsaw | of Geophysics

EUREC4A meeting 6.04.2023

Importance of turbulence

Turbulence eddy cascade

Inertial range scaling

Homogeneous isotropic turbulence under Kolmogorov hypotheses

3D velocity spectrum

$$E(k) = C\epsilon^{\frac{2}{3}}\kappa^{-\frac{5}{3}}$$

1D velocity spectra

Longitudinal
$$E_L(\kappa_L) = C_L \epsilon^{\frac{2}{3}} \kappa_L^{-\frac{5}{3}}$$
 u
Transverse $E_T(\kappa_L) = C_T \epsilon^{\frac{2}{3}} \kappa_L^{-\frac{5}{3}}$ v, w

2nd order velocity structure functions

e.g.
$$D_u(r) = \langle [u(x+r) - u(x)]^2 \rangle$$

Longitudinal $D_L(r) = B_L \epsilon^{\frac{2}{3}} r^{\frac{2}{3}}$ u
Transverse $D_T(r) = B_T \epsilon^{\frac{2}{3}} r^{\frac{2}{3}}$ v, w

Universal constants

$$C \approx 1.5$$
 $C_L \approx 0.49$ $C_T \approx 0.65$ $B_L \approx 2.0$ $B_T \approx 2.6$

Practical estimation of TKE dissipation rate

Nowak et al. 2021

+ analogously for *u*, *v* or spectrum scaling ...

Anisotropy of atmospheric turbulence

Isotropic turbulence

$$\begin{aligned} \langle u'^2 \rangle &= \langle v'^2 \rangle = \langle w'^2 \rangle \\ \epsilon_u &= \epsilon_v = \epsilon_w \end{aligned}$$

Anisotropic turbulence

$$A_{var} = \frac{2\langle w'^2 \rangle}{\langle u'^2 \rangle + \langle v'^2 \rangle} \neq 1$$

$$A_{\epsilon} = \sqrt{\frac{2\epsilon_w^2}{\epsilon_u^2 + \epsilon_w^2}} \neq 1$$

Anisotropy in a decoupled stratocumulus-topped marine boundary layer

Nowak et al. 2021

Turbulence kinetic energy budget

Figure 4.5 Typical ranges of terms in the TKE budget equation (4.41) during daytime, composited from observations and numerical simulations from a number of investigators. Values have been normalized by w_*^3/z_i , where z_i is the height of the inversion at the top of the boundary layer and w_* is the convective velocity scale defined as $w_* = [(g/\overline{\theta})\overline{w'\theta'}|_0 z_i]^{1/3}$ (typically, $w_*^3/z_i \sim 6 \times 10^{-3} \text{ m}^2 \text{ s}^{-3}$). (Adapted from Stull [1988].)

Markowski and Richardson 2010

Turbulence in trade-wind atmospheric boundary layer

EUREC4A ATR-32 flight patterns

Rectangles 120x20 km perpendicular to the mean easterly wind at **cloud base** (targeted max CF) L-shape legs 60+60 km, along/across wind, near the **top of the SBL**, 150-200 m below cloud base L-shape legs 60+60 km, along/cross wind, near the **middle of the SBL Surface** leg about 40 km at 60 m

EUREC4A ATR-32 datasets

RF09 – RF19 longlegs	Level	#	Av length [km]
 Lothon, M. & Brilouet, P. (2020): SAFIRE ATR42: Turbulence Data 25 Hz (L3 v1.9) 	cloud-base	116	54.4
• Bony, S., Brilouet, P. & Aemisegger, F. (2021): SAFIRE ATR42: Flights segmentation (v1.9)	top-SBL	20	62.1
Coutris, P. (2021): SAFIRE ATR42: PMA/Cloud composite dataset (v1)	mid-SBL	19	55.8
described in data papers: Bony et al. 2022, Brilouet et al. 2021	surface	10	40.6

Segment-wide parameters: velocity variance

ux, vy – longitudinal and transverse with respect to aircraft ul, vt – longitudinal and transverse with respect to mean wind dot – median value box – interquartile range whisker – entire range

Segment-wide parameters: dissipation rate

whisker – entire range

¹¹

Segment-wide parameters: inertial range scaling

fitting in the range 8 - 80 m

dot – median value box – interquartile range whisker – entire range

Segment-wide parameters: anisotropy

Horizontal fluctuations often prevail over vertical. Longitudinal and lateral are mostly in balance. Variance – dominant contribution of large eddies Dissipation – contribution of inertial range eddies

Segment-wide parameters: anisotropy

Mid SBL is close to isotropy, horizontal fluctuations prevail at other levels. Large eddies are often more anisotropic than inertial range eddies.

Local parameters. What is the turbulence inside and outside clouds?

Where is the cloud?

%		upPMA			
		true	false	nan	
	true	2.17	1.96	0	
RH	false	2.04	87.3	0	
	nan	0.58	5.94	0	

upPMA – PMA 1 Hz mask interpolated at 25 Hz

How to sample turbulence in small clouds?

Construction of averaging windows

Local parameters: example

Local parameters: example (zoom)

Local parameters: examples at other levels

Local parameters: dissipation rate

$[cm^2s^{-3}]$	surface	mid SBL	top SBL	CB clear	PMA cloud	RH cloud
ϵ_w	3.25 ± 3.85	1.12 ± 1.72	0.43 ± 0.85	0.11 ± 0.24	3.35 ± 4.27	2.17 ± 2.99
ϵ_u	4.27 ± 5.04	1.33 ± 1.88	0.62 ± 1.09	0.17 ± 0.35	3.27 ± 3.68	2.33 ± 3.40
ϵ_v	4.11 ± 5.58	1.25 ± 1.87	0.56 ± 1.03	0.15 ± 0.32	2.95 ± 3.76	2.25 ± 3.01

Local parameters: flight2flight normalization

23

Local parameters: inertial range scaling

	surface	mid SBL	top SBL	CB clear	PMA cloud	RH cloud
S _W	0.62 ± 0.28	0.71 ± 0.31	0.66 ± 0.31	0.67 ± 0.34	0.77 ± 0.31	0.73 ± 0.31
s _u	0.62 ± 0.29	0.64 ± 0.28	0.64 ± 0.29	0.64 ± 0.31	0.67 ± 0.30	0.64 ± 0.30
S_v	0.64 ± 0.29	0.67 ± 0.29	0.66 ± 0.30	0.67 ± 0.32	0.67 ± 0.31	0.67 ± 0.30

Local parameters: anisotropy

	surface	mid SBL	top SBL	CB clear	PMA cloud	RH cloud
A_{ϵ}	0.86 ± 0.67	1.02 ± 0.90	0.86 ± 0.82	0.82 ± 0.94	1.31 ± 1.17	1.15 ± 1.08

Local parameters: thermodynamics (fluctuations)

	CB clear	PMA cloud	RH cloud
w' [m/s]	-0.013 ± 0.280	0.25 ± 0.62	0.28 ± 0.51
<i>T'</i> [°C]	0.009 ± 0.155	-0.18 ± 0.18	-0.21 ± 0.16
$r_{v}^{\prime} [{ m g/kg}]$	-0.033 ± 0.533	0.69 ± 0.66	0.95 ± 0.56

– surface – mid SBL – top SBL

– CB clear

.

Local parameters: thermodynamics

Small-scale turbulence in trade-wind ABL - summary

Small-scale turbulence in trade-wind atmospheric boundary layer in EUREC4A observations

Jakub L. Nowak

UNIVERSITY | INSTITUTE of Warsaw | of Geophysics

EUREC4A meeting 6.04.2023

Local parameters: conserved variables

