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Mark Rothko, Blue and Grey (1962) 2

Trade-wind atmosphere has characteristic vertical structure

e.g., Malkus, 1958, Augstein, 1974, Yin & Albrecht, 2000

Specific humidity / gkg-1

Augstein, 1974

Studying vertical structure teaches us about 
physical processes producing this structure
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Reproduced from Garcia, Mellado, 2014
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Direct numerical simulation results 
reproduced from Garcia & Mellado, 2014

Sharp buoyancy gradients (green)

Previous views of the transition layer (sharp gradients),
In analogy with stratocumulus regimes or dry convective layers 
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e.g., Lilly, 1968, Arakawa, Schubert, 1974, 
Betts, 1976, Albrecht, 1979, Stevens 2006
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How representative is this cloud-free structure in the trades?
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e.g., Lilly, 1968, Arakawa, Schubert, 1974, 
Betts, 1976, Albrecht, 1979, Stevens 2006
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Cloud-base cloud fraction measured from a lidar-radar synergy is 
5.3 3.2% (Bony et al., 2022), so it could be reasonable to assume 

that the cloud-free transition layer structure is the baseline
±



Most of the time, vertical gradients are smoother.
How to define the transition layer from thermodynamic profiles?
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Apply height definitions, e.g., Canut et al., 2012, to observed thermodynamic profiles

• Each colored profile 
averages ~12 dropsondes

• Black is the campaign-
mean (~810 sondes)



Evidence for ~150 50 m thick transition layer
between mixed and subcloud layers

±
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• Associate transition layer with region between mixed layer and subcloud layer tops that is better 
mixed in  than { } individually


• Transition layer evident in both individual and aggregated soundings
θv q, θ

Δq

Vertical height / m

Mixed layer 

top

Cold pools

These distributions are 
calculated from 

individual dropsondes



Transition layer thermodynamic gradients differ from those in mixed and 
cloud layers (810 dropsonde profiles composited by layer; mean depths)

Mixed layer

Transition layer

Cloud layer
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What produces the observed transition layer structure 

that differs from jump-like structure?



Observations are moister and colder 
than jump-like structure would suggest



Do clouds dissipating (moistening and cooling)
cause smoother vertical gradients in transition layer?

?



Majority of cloud bases form within transition layer

• About 60% of cloud bases (estimated 
from three-hourly ceilometer data) 
and ~75% LCLs from dropsondes 
also below transition layer top


• Another way of defining the transition 
layer is between cloud base and level 
of maximum cloud-base cloudiness 
(cf. Vogel et al., 2022)

Cf. cloud based above the transition 
layer in Malkus, 1958; Augstein, 1974; 
but within transition layer in Neggers 
et al., 2009, Gentine et al., 2013



Test using denial of mechanism — 
examine transition layer structure 

in large clear-sky areas
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defined:
1. by eye, within patterns of cloud organization, 

identified from satellite images
2. as cloud-free over about 200 km of flight path 

(~15 minutes of flying) using cloud flags and 
cloud top heights from WALES lidar 

3. using large-eddy simulation output from 
Dauhut et al., 2022

GOES-E

~220 km
GOES-E



~ 220 km
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Sharp gradients exist, but rarely, and in large clear-sky areas
GOES-E 01-22



~ 220 km
16

02-02GOES-E

Sharp gradients exist, but rarely, and in large clear-sky areas



1. Is the jump structure found in large clear-sky areas? 

2. Is the presence of shallow clouds sufficient to 
smooth vertical gradients away from jump structure?
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Very shallow clouds are ubiquitous. 
Are they associated with smoother vertical gradients?
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(lidar data)

Cf. Two cloud populations, Genkova et al. 2012, Leahy et al., 2012, Mieslinger et al., 2019, Vial et al, 2019, Vial et al., in review
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Specific humidity / gkg-1

Select sharpest vertical 
gradient below 800 m

Select sharpest vertical gradient in subcloud layer profile
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Large clear-sky areas (red) exhibit stronger vertical gradients
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Specific humidity / gkg-1

Select sharpest vertical 
gradient below 800 m

Also see similar distributions for LES output (from Dauhut et al., 2022)



1. Is the jump structure found in large clear-sky areas? 
Yes.  

2. Is the presence of shallow clouds sufficient to 
smooth vertical gradients away from jump structure? 
Yes.
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A similar picture in LES

LES simulation output from Thibaut Dauhut, 100 m (horizontal); 40 m (vertical) 

Dauhut et al., 2022 QJRMS
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A similar picture in LES

LES simulation output from Thibaut Dauhut, 100 m (horizontal); 40 m (vertical) 

Dauhut et al., 2022 QJRMS
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A similar picture in LES
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A similar picture in LES



1. Is the jump structure found in large clear-sky areas? 
Yes.  

2. Is the presence of shallow clouds sufficient to 
smooth vertical gradients away from jump structure? 
Yes.
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2*. No strong association between transition layer vertical gradients and 
strength of mesoscale subsidence (in obs. and LES)
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Implications of a cloudy transition layer



Do differences in transition layer structure matter for 
mixed layer state & surface fluxes?
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• Inferences from mixed layer theory and mixing diagrams (not shown, 
following Paluch, 1979) suggest that the observed transition layer 
structure does not strongly affect the rate of entrainment mixing 

• Rather, it influences the properties of the air incorporated into the 
mixed layer, primarily as a moistening



Contributions to energetics of entrainment mixing
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e.g., Ball, 1960, Lilly, 1968, Betts, 1973, Tennekes, 
1973, Deardorff, 1974, Stull, 1976, Stevens 2006

Convert turbulence energy 
to potential energy

0 Fθv

AeFθv

Surface turbulence flux

‘Harvesting’ some portion of 
surface turbulence flux to do 

entrainment work

E =
dh
dt

=
AeFθv

Δ1θv

Δθv

θv



Contributions to energetics of entrainment mixing
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Ae: entrainment efficiency of surface 
turbulence source (constant)

e.g., Ball, 1960, Lilly, 1968, Betts, 1973, Tennekes, 
1973, Deardorff, 1974, Stull, 1976, Stevens 2006

Convert turbulence energy 
to potential energy

Δθv

θv
0 Fθv

AeFθv

Ae=0.2? 0.4?

Surface turbulence flux

‘Harvesting’ some portion of 
surface turbulence flux to do 

entrainment work

E =
dh
dt

=
AeFθv

Δ1θv



Contributions to energetics of entrainment mixing
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Ae: entrainment efficiency of surface 
turbulence source (constant)

e.g., Ball, 1960, Lilly, 1968, Betts, 1973, Tennekes, 
1973, Deardorff, 1974, Stull, 1976, Stevens 2006

Convert turbulence energy 
to potential energy

0 Fθv

AeFθv

Surface turbulence flux

‘Harvesting’ some portion of 
surface turbulence flux to do 

entrainment work

E =
dh
dt

=
AeFθv

Δ1θv

Ae=0.43*
*Albright, A. L., Bony, S., Stevens, B., & Vogel, R. 
(2022). Observed subcloud layer moisture and 
heat budgets in the trades. JAS 2022.
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Cloud liquid water flux contribution to Ae ~ 0.4
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cf. Garcia, Mellado, 2014
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Symmetry between shallow and deeper clouds, 
each population grows its own layer (Riehl et al., 1951, Stevens 2007, deeper clouds)
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Photo by Frédéric Batier, 2020Riehl et al, 1951

Trade-wind inversion

Do small clouds make it easier for larger clouds to form? (e.g., Neggers, 2015)
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A short side project



Can we predict transition layer gradients based upon 
environmental variables?
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100 m (horizontal); 40 m (vertical) model output

• 9 variables considered: {q, , wind speed in mixed layer; vertical velocity at different altitudes; integrated 
cloud liquid water content; distance to cloud ‘center of mass’, cloud base height, cloud top height}


• Random forest or XGBoost (machine learning) algorithms

θ

R2(train)=0.96

R2(test)=0.71



Can we predict transition layer gradients based upon 
environmental variables?
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100 m (horizontal); 40 m (vertical) model output

R2(train)=0.96

R2(test)=0.71

Preliminary take-away: 
Algorithm has some predictive skill for 

maximum transition layer vertical gradient

• 9 variables considered: {q, , wind speed in mixed layer; vertical velocity at different altitudes; integrated 
cloud liquid water content; distance to cloud ‘center of mass’, cloud base height, cloud top height}


• Random forest or XGBoost (machine learning) algorithms

θ



Most important environmental variables: 
but, a cold pool imprint rather than a predictive feature?
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Integrated cloud 
liquid water

Mixed layer W 

Mixed layer q 

10 m wind speed

W at 2000 m

Cloud top height

Cloud base height

Mixed layer  θ
Distance to cloud 

center of mass
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Cold pool signature? Regions  in contoursθ ≤ 297.5
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Skill increases when re-running analysis outside cloud region, 
and distance to cloud center of mass is most important variable

R2(train)=0.97

R2(test)=0.80

Integrated cloud

 liquid water



Conclusions
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1. Majority of cloud bases form within (not above) the transition layer. WALES 
lidar data also support a bimodal cloud top height distribution, with a first 
population of very shallow clouds (tops generally below 1.3 km) and a 
second population of deeper clouds (extending to 2–3 km)

2. Life cycle of this first cloud population maintains the transition layer 
structure, by smoothing vertical thermodynamic gradients by a 
condensation-evaporation mechanism

3. Inferences from mixed layer theory and mixing diagrams suggest that 
differences in cloud-free and cloudy transition layer structures does not 
affect the rate of entrainment mixing, but rather the properties of the air 
incorporated into the mixed layer, primarily as a moistening
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