SST-driven changes in cloud radiative heating in RCEMIP models and observations

Blaž Gasparini, Aiko Voigt University of Vienna Giulio Mandorli, Claudia Stubenrauch LMD

Funded by the European Union

Cloud radiative heating modulates climate processes and their responses to global warming

1. Cloud radiative heating influences large-scale dynamics and circulation response to global warming (e.g. Voigt et al., 2021, Dinh et al., accepted)

Dinh et al., accepted

2. Cloud radiative heating prolongs single high cloud evolution

Changes to cloud radiative heating with warming

Zero hypothesis: Cloud radiative heating shifts to a higher level

Radiative calculations show an increase in CRH

Cloud of **FIXED** properties (cloud optical depth = 10, ice water path = constant) Fixed cloud top temp.

Radiative code fed in with equilibrium temperature and moisture profiles from RCE simulations at SST=26°C and SST=34°C

Radiative calculations show an increase in CRH

Cloud of **FIXED** properties (cloud optical depth = 10, ice water path = constant) <u>Fixed cloud top temp.</u>

Radiative code fed in with equilibrium temperature and moisture profiles from RCE simulations at SST=26°C and SST=34°C

The increase is explained by a change in density

Shift in altitude: density decreases

So we need to fix our zero hypothesis

Use RCEMIP to test the updated zero hypothesis Wing et al., 2020

Radiative-convective equilibrium (RCE): The most idealized representation of the tropical climate

RCEMIP = RCE modeling intercomparison >30 different models (GCM, SCM, CRM, LES, GCRMs), simulations at 3 different SSTs

	(a) CM1		0 ,	
Simulated		198	Ange and a second	
	(b) DAM			
OLR from				10
DCC	(c) ICON-LEM			
RCE large				
models	(d) ICON-NWP			
mouels		11		
	(e) MESONH			_
	(f) SAM-CRM			
	(g) SCALE			
	1. Sec. 14 1.	1.1		
	(h) UCLA-CRM			
	(i) UKMO-CASIM	<u>.</u>		
	(j) UKMO-RA1-T	5	241	
				i.
	(k) UKMO-RA1-T-nocloud			-
	(I) WRF-COL-CRM			_
S.				
- /	(m) WRF-CRM			
				•
	1000 km	0 100 200	300	U
		W m ⁻²		

RCEMIP ensemble: vertical shift & intensity increase

32 RCEMIP simulations

18 RCE_large and 14 RCE_small sets of simulations with clear and full-sky flux profiles

RCEMIP ensemble: vertical shift & intensity increase

0.6

0.8

18 RCE large simulations 20.0 LW+SW cloud 295 17.5radiative heating 300 305 15.0 altitude [km] 12.5 10.0 7.5 5.0 2.5 0.0

0.4

K/day

0.2

-0.2

0.0

Similar behavior when considering only large domain simulations

Can we predict the CRH in a changed climate state based on the control climate state only?

How far we come by vertical shift & density terms?

- "Fit" a diluted moist adiabat (assuming 90% RH) so that it roughly reproduced the RCEMIP model temperature profiles
- 2. Warm it by 10°C (at the surface level)
- 3. Find the temperature of peak CRH
- 4. Assuming no change in temperature, find the vertical displacement in km

Example: 1. Find the vertical shift

Example: Vertical shift

Example: Vertical shift – about 300 m bias

Example: Density factor – quite accurate

Caveat: RCEMIP models point at a large CRH spread

The change can be well explained by a vertical shift (~60%) and the density change (~10%)

Where does the missing 30% of the spread comes from?

are responsible for the rest of the spread

Is it possible to assume an apriori "iris" term?

Shift in altitude: density decreases

What about the real tropical atmosphere?

Can we detect a cloud radiative heating signal from the interannual variability?

1. CloudSat-CALIPSO-derived CRH looks promising!

About 6 years of monthly CloudSat-CALIPSO derived heating rates

Color: Tropical SST anomaly from the selected 6-year mean

Caveats:

1. mixing up seasonal shifts and interannual variability!

2. Only 6-year long timeseries of this product

2. IR-sounder-derived CRH: not that clear signal

2. IR-sounder-derived CRH: not that clear signal

Conclusions

- 1. <u>Theory:</u> If clouds behave according to FAT/PHAT, their CRH increase when they shift higher in altitude/lower in density
- 2. <u>RCEMIP simulations:</u> Well explained by an isothermal shift on a diluted adiabat + density factor What about the GCMs?
- 3. <u>Observations</u>: vertical shift + intensity increase [cannot be explained by density alone]

If we know the control climate state we can to a large extent predict its shift in a warmer climate

blaz.gasparini@univie.ac.at