Skip to content. | Skip to navigation

Personal tools

Sections
You are here: Home / Publications / Peer-reviewed papers / lmd_Boucher2000_abstracts.html

lmd_Boucher2000_abstracts.html

2000 .

(2 publications)

J. Haywood and O. Boucher. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Reviews of Geophysics, 38:513-543, November 2000. [ bib | DOI | ADS link ]

This paper reviews the many developments in estimates of the direct and indirect global annual mean radiative forcing due to present-day concentrations of anthropogenic tropospheric aerosols since Intergovernmental Panel on Climate Change [1996]. The range of estimates of the global mean direct radiative forcing due to six distinct aerosol types is presented. Additionally, the indirect effect is split into two components corresponding to the radiative forcing due to modification of the radiative properties of clouds (cloud albedo effect) and the effects of anthropogenic aerosols upon the lifetime of clouds (cloud lifetime effect). The radiative forcing for anthropogenic sulphate aerosol ranges from -0.26 to -0.82 W m-2. For fossil fuel black carbon the radiative forcing ranges from +0.16 W m-2 for an external mixture to +0.42 W m-2 for where the black carbon is modeled as internally mixed with sulphate aerosol. For fossil fuel organic carbon the two estimates of the likely weakest limit of the direct radiative forcing are -0.02 and -0.04 W m-2. For biomass-burning sources of black carbon and organic carbon the combined radiative forcing ranges from -0.14 to -0.74 W m-2. Estimates of the radiative forcing due to mineral dust vary widely from +0.09 to -0.46 W m-2; even the sign of the radiative forcing is not well established due to the competing effects of solar and terrestrial radiative forcings. A single study provides a very tentative estimate of the radiative forcing of nitrates to be -0.03 W m-2. Estimates of the cloud albedo indirect radiative forcing range from -0.3 to approximately -1.8 W m-2. Although the cloud lifetime effect is identified as a potentially important climate forcing mechanism, it is difficult to quantify in the context of the present definition of radiative forcing of climate change and current model simulations. This is because its estimation by general circulation models necessarily includes some level of cloud and water vapor feedbacks, which affect the hydrological cycle and the dynamics of the atmosphere. Available models predict that the radiative flux perturbation associated with the cloud lifetime effect is of a magnitude similar to that of the cloud albedo effect.

O. Boucher and D. Tanré. Estimation of the aerosol perturbation to the Earth's Radiative Budget over oceans using POLDER satellite aerosol retrievals. Geophysical Research Letters, 27:1103-1106, April 2000. [ bib | DOI | ADS link ]

POLDER satellite retrievals of aerosol properties over oceans are used to estimate a global-mean clear-sky aerosol shortwave flux perturbation of order -5 to -6 Wm-2. Uncertainties due to aerosol absorption and POLDER cloud screening algorithm are quantified. In order to bound the radiative forcing by anthropogenic aerosols, we attempt to remove the contribution of background aerosols from these estimates and present all-sky aerosol radiative effects for three regions and two methods. The results are sensitive to the thresholds used to define the background conditions.

Contact information

EMC3 group

LMD/CNRS/UPMC
Case 99
Tour 45-55, 3ème étage
4 Place Jussieu
75252 Paris Cedex 05
FRANCE
Tel: 33 + 1 44 27 27 99
      33 + 6 16 27 34 18 (Dr F. Cheruy)
Tel: 33 + 1 44 27 35 25 (Secretary)
Fax: 33 + 1 44 27 62 72
email: emc3 at lmd.jussieu.fr

Map of our location

Real time LMDZ simulations

Today's LMDZ meteogram for the SIRTA site

Intranet EMC3

Intranet EMC3