Skip to content. | Skip to navigation

Personal tools

Sections
You are here: Home / Publications / Peer-reviewed papers / lmd_Codron2010_abstracts.html

lmd_Codron2010_abstracts.html

2010 .

(4 publications)

J. Cattiaux, R. Vautard, C. Cassou, P. Yiou, V. Masson-Delmotte, and F. Codron. Winter 2010 in Europe: A cold extreme in a warming climate. Geophysical Research Letters, 37:20704, October 2010. [ bib | DOI | ADS link ]

The winter of 2009/2010 was characterized by record persistence of the negative phase of the North-Atlantic Oscillation (NAO) which caused several severe cold spells over Northern and Western Europe. This somehow unusual winter with respect to the most recent ones arose concurrently with public debate on climate change, during and after the Copenhagen climate negotiations. We show however that the cold European temperature anomaly of winter 2010 was (i) not extreme relative to winters of the past six decades, and (ii) warmer than expected from its record-breaking seasonal circulation indices such as NAO or blocking frequency. Daily flow-analogues of winter 2010, taken in past winters, were associated with much colder temperatures. The winter 2010 thus provides a consistent picture of a regional cold event mitigated by long-term climate warming.

K. Goubanova, L. Li, P. Yiou, and F. Codron. Relation between Large-Scale Circulation and European Winter Temperature: Does It Hold under Warmer Climate? Journal of Climate, 23:3752-3760, July 2010. [ bib | DOI | ADS link ]

M. C. Wyant, R. Wood, C. S. Bretherton, C. R. Mechoso, J. Bacmeister, M. A. Balmaseda, B. Barrett, F. Codron, P. Earnshaw, J. Fast, C. Hannay, J. W. Kaiser, H. Kitagawa, S. A. Klein, M. Köhler, J. Manganello, H.-L. Pan, F. Sun, S. Wang, and Y. Wang. The PreVOCA experiment: modeling the lower troposphere in the Southeast Pacific. Atmospheric Chemistry & Physics, 10:4757-4774, May 2010. [ bib | ADS link ]

The Preliminary VOCALS Model Assessment (PreVOCA) aims to assess contemporary atmospheric modeling of the subtropical South East Pacific, with a particular focus on the clouds and the marine boundary layer (MBL). Models results from fourteen modeling centers were collected including operational forecast models, regional models, and global climate models for the month of October 2006. Forecast models and global climate models produced daily forecasts, while most regional models were run continuously during the study period, initialized and forced at the boundaries with global model analyses. Results are compared in the region from 40deg S to the equator and from 110deg W to 70deg W, corresponding to the Pacific coast of South America. Mean-monthly model surface winds agree well with QuikSCAT observed winds and models agree fairly well on mean weak large-scale subsidence in the region next to the coast. However they have greatly differing geographic patterns of mean cloud fraction with only a few models agreeing well with MODIS observations. Most models also underestimate the MBL depth by several hundred meters in the eastern part of the study region. The diurnal cycle of liquid water path is underestimated by most models at the 85deg W 20deg S stratus buoy site compared with satellite, consistent with previous modeling studies. The low cloud fraction is also underestimated during all parts of the diurnal cycle compared to surface-based climatologies. Most models qualitatively capture the MBL deepening around 15 October 2006 at the stratus buoy, associated with colder air at 700 hPa.

O. Marti, P. Braconnot, J.-L. Dufresne, J. Bellier, R. Benshila, S. Bony, P. Brockmann, P. Cadule, A. Caubel, F. Codron, N. de Noblet, S. Denvil, L. Fairhead, T. Fichefet, M.-A. Foujols, P. Friedlingstein, H. Goosse, J.-Y. Grandpeix, E. Guilyardi, F. Hourdin, A. Idelkadi, M. Kageyama, G. Krinner, C. Lévy, G. Madec, J. Mignot, I. Musat, D. Swingedouw, and C. Talandier. Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Climate Dynamics, 34:1-26, January 2010. [ bib | DOI | ADS link ]

This paper presents the major characteristics of the Institut Pierre Simon Laplace (IPSL) coupled ocean-atmosphere general circulation model. The model components and the coupling methodology are described, as well as the main characteristics of the climatology and interannual variability. The model results of the standard version used for IPCC climate projections, and for intercomparison projects like the Paleoclimate Modeling Intercomparison Project (PMIP 2) are compared to those with a higher resolution in the atmosphere. A focus on the North Atlantic and on the tropics is used to address the impact of the atmosphere resolution on processes and feedbacks. In the North Atlantic, the resolution change leads to an improved representation of the storm-tracks and the North Atlantic oscillation. The better representation of the wind structure increases the northward salt transports, the deep-water formation and the Atlantic meridional overturning circulation. In the tropics, the ocean-atmosphere dynamical coupling, or Bjerknes feedback, improves with the resolution. The amplitude of ENSO (El Niño-Southern oscillation) consequently increases, as the damping processes are left unchanged.

Contact information

EMC3 group

LMD/CNRS/UPMC
Case 99
Tour 45-55, 3ème étage
4 Place Jussieu
75252 Paris Cedex 05
FRANCE
Tel: 33 + 1 44 27 27 99
      33 + 6 16 27 34 18 (Dr F. Cheruy)
Tel: 33 + 1 44 27 35 25 (Secretary)
Fax: 33 + 1 44 27 62 72
email: emc3 at lmd.jussieu.fr

Map of our location

EUREC4A campaign

logo_eurec4a.fc481ace.png

Click the above logo for
the operationnal center.
Today's LMDZ meteogram