Skip to content. | Skip to navigation

Personal tools

Sections
You are here: Home / Publications / Peer-reviewed papers / lmd_EMC32015_abstracts.html

lmd_EMC32015_abstracts.html

2015 .

(18 publications)

S. Bony, B. Stevens, D. M. W. Frierson, C. Jakob, M. Kageyama, R. Pincus, T. G. Shepherd, S. C. Sherwood, A. P. Siebesma, A. H. Sobel, M. Watanabe, and M. J. Webb. Clouds, circulation and climate sensitivity. Nature Geoscience, 8:261-268, April 2015. [ bib | DOI | ADS link ]

Fundamental puzzles of climate science remain unsolved because of our limited understanding of how clouds, circulation and climate interact. One example is our inability to provide robust assessments of future global and regional climate changes. However, ongoing advances in our capacity to observe, simulate and conceptualize the climate system now make it possible to fill gaps in our knowledge. We argue that progress can be accelerated by focusing research on a handful of important scientific questions that have become tractable as a result of recent advances. We propose four such questions below; they involve understanding the role of cloud feedbacks and convective organization in climate, and the factors that control the position, the strength and the variability of the tropical rain belts and the extratropical storm tracks.

J.-L. Bonne, H. C. Steen-Larsen, C. Risi, M. Werner, H. Sodemann, J.-L. Lacour, X. Fettweis, G. Cesana, M. Delmotte, O. Cattani, P. Vallelonga, H. A. Kjær, C. Clerbaux, Á. E. Sveinbjörnsdóttir, and V. Masson-Delmotte. The summer 2012 Greenland heat wave: In situ and remote sensing observations of water vapor isotopic composition during an atmospheric river event. Journal of Geophysical Research (Atmospheres), 120:2970-2989, April 2015. [ bib | DOI | ADS link ]

During 7-12 July 2012, extreme moist and warm conditions occurred over Greenland, leading to widespread surface melt. To investigate the physical processes during the atmospheric moisture transport of this event, we study the water vapor isotopic composition using surface in situ observations in Bermuda Island, South Greenland coast (Ivittuut), and northwest Greenland ice sheet (NEEM), as well as remote sensing observations (Infrared Atmospheric Sounding Interferometer (IASI) instrument on board MetOp-A), depicting propagation of similar surface and midtropospheric humidity and δD signals. Simulations using Lagrangian moisture source diagnostic and water tagging in a regional model showed that Greenland was affected by an atmospheric river transporting moisture from the western subtropical North Atlantic Ocean, which is coherent with observations of snow pit impurities deposited at NEEM. At Ivittuut, surface air temperature, humidity, and δD increases are observed. At NEEM, similar temperature increase is associated with a large and long-lasting 100δD enrichment and 15 deuterium excess decrease, thereby reaching Ivittuut level. We assess the simulation of this event in two isotope-enabled atmospheric general circulation models (LMDz-iso and ECHAM5-wiso). LMDz-iso correctly captures the timing of propagation for this event identified in IASI data but depict too gradual variations when compared to surface data. Both models reproduce the surface meteorological and isotopic values during the event but underestimate the background deuterium excess at NEEM. Cloud liquid water content parametrization in LMDz-iso poorly impacts the vapor isotopic composition. Our data demonstrate that during this atmospheric river event the deuterium excess signal is conserved from the moisture source to northwest Greenland.

B. L'Hévéder, F. Codron, and M. Ghil. Impact of Anomalous Northward Oceanic Heat Transport on Global Climate in a Slab Ocean Setting. Journal of Climate, 28:2650-2664, April 2015. [ bib | DOI | ADS link ]

J. Gao, C. Risi, V. Masson-Delmotte, Y. He, and B. Xu. Southern Tibetan Plateau ice core δ18O reflects abrupt shifts in atmospheric circulation in the late 1970s. Climate Dynamics, April 2015. [ bib | DOI | ADS link ]

Ice cores from the Tibetan Plateau provide high-resolution records of changes in the snow and ice isotopic composition. In the monsoon sector of southern Tibetan Plateau, their climatic interpretation has been controversial. Here, we present a new high-resolution δ18O record obtained from 2206 measurements performed at 2-3 cm depth resolution along a 55.1 m depth ice core retrieved from the Noijinkansang glacier (NK, 5950 m a.s.l.) that spans the period from 1864 to 2006 AD. The data are characterized by high δ18O values in the nineteenth century, 1910s and 1960s, followed by a drop in the late 1970s and a recent increasing trend. The comparison with regional meteorological data and with a simulation performed with the LMDZiso general circulation model leads to the attribution of the abrupt shift in the late 1970s predominantly to changes in regional atmospheric circulation, together with the impact of atmospheric temperature change. Correlation analyses suggest that the large-scale modes of variability (PDO and ENSO, i.e. Pacific Decadal Oscillation and El Nino-Southern Oscillation) play important roles in modulating NK δ18O changes. The NK δ18O minimum at the end of the 1970s coincides with a PDO phase shift, an inflexion point of the zonal index (representing the overall intensity of the surface westerly anomalies over middle latitudes) as well as ENSO, implying interdecadal modulation of the influence of the PDO/ENSO on the Indian monsoon on southern TP precipitation δ18O. While convective activity above North India controls the intra-seasonal variability of precipitation δ18O in southern TP, other processes associated with changes in large-scale atmospheric circulation act at the inter-annual scale.

B. Medeiros, B. Stevens, and S. Bony. Using aquaplanets to understand the robust responses of comprehensive climate models to forcing. Climate Dynamics, 44:1957-1977, April 2015. [ bib | DOI | ADS link ]

Idealized climate change experiments using fixed sea-surface temperature are investigated to determine whether zonally symmetric aquaplanet configurations are useful for understanding climate feedbacks in more realistic configurations. The aquaplanets capture many of the robust responses of the large-scale circulation and hydrologic cycle to both warming the sea-surface temperature and quadrupling atmospheric CO2. The cloud response to both perturbations varies across models in both Earth-like and aquaplanet configurations, and this spread arises primarily from regions of large-scale subsidence. Most models produce a consistent cloud change across the subsidence regimes, and the feedback in trade-wind cumulus regions dominates the tropical response. It is shown that these trade-wind regions have similar cloud feedback in Earth-like and aquaplanet warming experiments. The tropical average cloud feedback of the Earth-like experiment is captured by five of eight aquaplanets, and the three outliers are investigated to understand the discrepancy. In two models, the discrepancy is due to warming induced dissipation of stratocumulus decks in the Earth-like configuration which are not represented in the aquaplanet. One model shows a circulation response in the aquaplanet experiment accompanied by a cloud response that differs from the Earth-like configuration. Quadrupling atmospheric CO2 in aquaplanets produces slightly greater adjusted forcing than in Earth-like configurations, showing that land-surface effects dampen the adjusted forcing. The analysis demonstrates how aquaplanets, as part of a model hierarchy, help elucidate robust aspects of climate change and develop understanding of the processes underlying them.

M. Benetti, G. Aloisi, G. Reverdin, C. Risi, and G. Sèze. Importance of boundary layer mixing for the isotopic composition of surface vapor over the subtropical North Atlantic Ocean. Journal of Geophysical Research (Atmospheres), 120:2190-2209, March 2015. [ bib | DOI | ADS link ]

During the summer 2012, we carried out continuous measurements of the isotopic composition (δ) of water vapor over the near-surface subtropical North Atlantic Ocean (STRASSE cruise). In this region of excess evaporation, we investigate the control of evaporation and mixing with a lower troposphere-derived, isotopically depleted air mass on the near-surface δ. We use a simple model to simulate the near-surface δ as the result of a two end-member mixing of the evaporative flux with free tropospheric air. The evaporative flux δ was estimated by the Craig and Gordon equation while the δ of the lower troposphere was taken from the LMDZ-iso global atmospheric circulation model. This simulation considers instantaneous mixing of lower tropospheric air with the evaporated flux and neglects lateral advection. Despite these simplifications, the simulations allow to identify the controls on the near-surface δ. The d-excess variability is largely a consequence of varying kinetic effects during evaporation, even during a convection event when the input of tropospheric vapor was strong. Kinetic effects and mixing processes affect simultaneously the near-surface δ and result in the vapor occupying distinct domains in the δ18O-δD space. The relative humidity-d-excess relationship shows that the closure assumption overestimates the d-excess variability at short time scales (less than a day). We interpret this as due to an effect of the residence time of the near-surface water vapor on the d-excess. Finally, we highlight the importance of reproducing mixing processes in models simulating isotopes over the subtropical North Atlantic Ocean and propose an extension of the closure assumption for use in initial conditions of distillation calculations.

G. Myhre, O. Boucher, F.-M. Bréon, P. Forster, and D. Shindell. Declining uncertainty in transient climate response as CO2 forcing dominates future climate change. Nature Geoscience, 8:181-185, March 2015. [ bib | DOI | ADS link ]

Carbon dioxide has exerted the largest portion of radiative forcing and surface temperature change over the industrial era, but other anthropogenic influences have also contributed. However, large uncertainties in total forcing make it difficult to derive climate sensitivity from historical observations. Anthropogenic forcing has increased between the Fourth and Fifth Assessment Reports of the Intergovernmental Panel of Climate Change (IPCC; refs , ), although its relative uncertainty has decreased. Here we show, based on data from the two reports, that this evolution towards lower uncertainty can be expected to continue into the future. Because it is easier to reduce air pollution than carbon dioxide emissions and because of the long lifetime of carbon dioxide, the less uncertain carbon dioxide forcing is expected to become increasingly dominant. Using a statistical model, we estimate that the relative uncertainty in anthropogenic forcing of more than 40% quoted in the latest IPCC report for 2011 will be almost halved by 2030, even without better scientific understanding. Absolute forcing uncertainty will also decline for the first time, provided projected decreases in aerosols occur. Other factors being equal, this stronger constraint on forcing will bring a significant reduction in the uncertainty of observation-based estimates of the transient climate response, with a 50% reduction in its uncertainty range expected by 2030.

P. Good, J. A. Lowe, T. Andrews, A. Wiltshire, R. Chadwick, J.-K. Ridley, M. B. Menary, N. Bouttes, J. L. Dufresne, J. M. Gregory, N. Schaller, and H. Shiogama. Corrigendum: Nonlinear regional warming with increasing CO2 concentrations. Nature Climate Change, 5:280, March 2015. [ bib | DOI | ADS link ]

J. H. Jiang, H. Su, C. Zhai, T. Janice Shen, T. Wu, J. Zhang, J. N. S. Cole, K. von Salzen, L. J. Donner, C. Seman, A. Del Genio, L. S. Nazarenko, J.-L. Dufresne, M. Watanabe, C. Morcrette, T. Koshiro, H. Kawai, A. Gettelman, L. Millán, W. G. Read, N. J. Livesey, Y. Kasai, and M. Shiotani. Evaluating the Diurnal Cycle of Upper-Tropospheric Ice Clouds in Climate Models Using SMILES Observations. Journal of Atmospheric Sciences, 72:1022-1044, March 2015. [ bib | DOI | ADS link ]

H. Pang, S. Hou, A. Landais, V. Masson-Delmotte, F. Prie, H. C. Steen-Larsen, C. Risi, Y. Li, J. Jouzel, Y. Wang, J. He, B. Minster, and S. Falourd. Spatial distribution of 17O-excess in surface snow along a traverse from Zhongshan station to Dome A, East Antarctica. Earth and Planetary Science Letters, 414:126-133, March 2015. [ bib | DOI | ADS link ]

The influence of temperature on the triple isotopic composition of oxygen in water is still an open question and limits the interpretation of water isotopic profiles in Antarctic ice cores. The main limitation arises from the lack of 17O-excess measurements in surface snow and especially for remote regions characterized by low temperature and accumulation rate. In this study, we present new 17O-excess measurements of surface snow along an East Antarctic traverse, from the coastal Zhongshan station to the highest point of the Antarctic ice sheet at Dome A. The 17O-excess data significantly decrease inland, with a latitudinal gradient of - 1.33 0.41 per meg/degree, an altitudinal gradient of - 0.48 0.17 permeg / 100 m, and a temperature gradient of 0.35 0.11 permeg /degC. Theoretical calculations performed using a Rayleigh model attribute this inland decrease to kinetic isotopic fractionation occurring during condensation from vapor to ice under supersaturation conditions at low temperatures. However, large heterogeneity of 17O-excess in Antarctic precipitation cannot only be explained by temperature at condensation and/or influences of relative humidity in the moisture source region.

W. May, A. Meier, M. Rummukainen, A. Berg, F. Chéruy, and S. Hagemann. Contributions of soil moisture interactions to climate change in the tropics in the GLACE-CMIP5 experiment. Climate Dynamics, March 2015. [ bib | DOI | ADS link ]

Contributions of changes in soil moisture to the projected climate change in the tropics at the end of the twenty first century are quantified using the simulations from five different global climate models, which contributed to the GLACE-CMIP5 experiment. ”GLACE” refers to the Global Land Atmosphere Coupling Experiment and ”CMIP5” to the fifth phase of the Coupled Model Intercomparison Project. This is done by relating the overall projected changes in climate to those changes in climate that are related to the projected changes in soil moisture. The study focusses on two particular aspects of the interactions of the soil moisture with climate, the soil moisture-temperature coupling and the soil moisture-precipitation coupling. The simulations show distinct future changes in soil moisture content in the tropics, with a general tendency of increases in the central parts of the tropics and decreases in the subtropics. These changes are associated with corresponding changes in precipitation, with an overall tendency of an approximate 5 % change in soil moisture in response to a precipitation change of 1 mm/day. All five individual models are characterized by the same qualitative behaviour, despite differences in the strength and in the robustness of the coupling between soil moisture and precipitation. The changes in soil moisture content are found to give important contributions to the overall climate change in the tropics. This is in particularly the case for latent and sensible heat flux, for which about 80 % of the overall changes are related to soil moisture changes. Similarly, about 80 % of the overall near-surface temperature changes (with the mean temperature changes in the tropics removed) are associated with soil moisture changes. For precipitation, on the other hand, about 30-40 % of the overall change can be attributed to soil moisture changes. The robustness of the contributions of the soil moisture changes to the overall climate change varies between the different meteorological variables, with a high degree of robustness for the surface energy fluxes, a fair degree for near-surface temperature and a low degree for precipitation. Similar to the coupling between soil moisture and precipitation, the five individual models are characterized by the same qualitative behaviour, albeit differences in the strength and the robustness of the contributions of the soil moisture change. This suggests that despite the regional differences in the projected climate changes between the individual models, the basic physical mechanisms governing the soil moisture-temperature coupling and the soil moisture-precipitation coupling work similarly in these models. The experiment confirms the conceptual models of the soil moisture-temperature coupling and the soil moisture-precipitation coupling described Seneviratne et al. (Earth-Sci Rev 99:125-161, 2010). For the soil moisture-temperature coupling, decreases (increases) in soil moisture lead to increasing (decreasing) sensible heat fluxes and near-surface temperatures. The soil moisture-precipitation coupling is part of a positive feedback loop, where increases (decreases) in precipitation cause increases (decreases) in soil moisture content, which, in turn, lead to increasing (decreasing) latent heat fluxes and precipitation.

M. J. Webb, A. P. Lock, A. Bodas-Salcedo, S. Bony, J. N. S. Cole, T. Koshiro, H. Kawai, C. Lacagnina, F. M. Selten, R. Roehrig, and B. Stevens. The diurnal cycle of marine cloud feedback in climate models. Climate Dynamics, 44:1419-1436, March 2015. [ bib | DOI | ADS link ]

We examine the diurnal cycle of marine cloud feedback using high frequency outputs in CFMIP-2 idealised uniform +4 K SST perturbation experiments from seven CMIP5 models. Most of the inter-model spread in the diurnal mean marine shortwave cloud feedback can be explained by low cloud responses, although these do not explain the model responses at the neutral/weakly negative end of the feedback range, where changes in mid and high level cloud properties are more important. All of the models show reductions in marine low cloud fraction in the warmer climate, and these are in almost all cases largest in the mornings when more cloud is present in the control simulations. This results in shortwave cloud feedbacks being slightly stronger and having the largest inter-model spread at this time of day. The diurnal amplitudes of the responses of marine cloud properties to the warming climate are however small compared to the inter-model differences in their diurnally meaned responses. This indicates that the diurnal cycle of cloud feedback is not strongly relevant to understanding inter-model spread in overall cloud feedback and climate sensitivity. A number of unusual behaviours in individual models are highlighted for future investigation.

J.-L. Lacour, L. Clarisse, J. Worden, M. Schneider, S. Barthlott, F. Hase, C. Risi, C. Clerbaux, D. Hurtmans, and P.-F. Coheur. Cross-validation of IASI/MetOp derived tropospheric δD with TES and ground-based FTIR observations. Atmospheric Measurement Techniques, 8:1447-1466, March 2015. [ bib | DOI | ADS link ]

The Infrared Atmospheric Sounding Interferometer (IASI) flying onboard MetOpA and MetOpB is able to capture fine isotopic variations of the HDO to H2O ratio (δD) in the troposphere. Such observations at the high spatio-temporal resolution of the sounder are of great interest to improve our understanding of the mechanisms controlling humidity in the troposphere. In this study we aim to empirically assess the validity of our error estimation previously evaluated theoretically. To achieve this, we compare IASI δD retrieved profiles with other available profiles of δD, from the TES infrared sounder onboard AURA and from three ground-based FTIR stations produced within the MUSICA project: the NDACC (Network for the Detection of Atmospheric Composition Change) sites Kiruna and Izaña, and the TCCON site Karlsruhe, which in addition to near-infrared TCCON spectra also records mid-infrared spectra. We describe the achievable level of agreement between the different retrievals and show that these theoretical errors are in good agreement with empirical differences. The comparisons are made at different locations from tropical to Arctic latitudes, above sea and above land. Generally IASI and TES are similarly sensitive to δD in the free troposphere which allows one to compare their measurements directly. At tropical latitudes where IASI's sensitivity is lower than that of TES, we show that the agreement improves when taking into account the sensitivity of IASI in the TES retrieval. For the comparison IASI-FTIR only direct comparisons are performed because the sensitivity profiles of the two observing systems do not allow to take into account their differences of sensitivity. We identify a quasi negligible bias in the free troposphere (-3) between IASI retrieved δD with the TES, which are bias corrected, but important with the ground-based FTIR reaching -47. We also suggest that model-satellite observation comparisons could be optimized with IASI thanks to its high spatial and temporal sampling.

R. Locatelli, P. Bousquet, F. Hourdin, M. Saunois, A. Cozic, F. Couvreux, J.-Y. Grandpeix, M.-P. Lefebvre, C. Rio, P. Bergamaschi, S. D. Chambers, U. Karstens, V. Kazan, S. van der Laan, H. A. J. Meijer, J. Moncrieff, M. Ramonet, H. A. Scheeren, C. Schlosser, M. Schmidt, A. Vermeulen, and A. G. Williams. Atmospheric transport and chemistry of trace gases in LMDz5B: evaluation and implications for inverse modelling. Geoscientific Model Development, 8:129-150, February 2015. [ bib | DOI | ADS link ]

Representation of atmospheric transport is a major source of error in the estimation of greenhouse gas sources and sinks by inverse modelling. Here we assess the impact on trace gas mole fractions of the new physical parameterizations recently implemented in the atmospheric global climate model LMDz to improve vertical diffusion, mesoscale mixing by thermal plumes in the planetary boundary layer (PBL), and deep convection in the troposphere. At the same time, the horizontal and vertical resolution of the model used in the inverse system has been increased. The aim of this paper is to evaluate the impact of these developments on the representation of trace gas transport and chemistry, and to anticipate the implications for inversions of greenhouse gas emissions using such an updated model. <BR /><BR /> Comparison of a one-dimensional version of LMDz with large eddy simulations shows that the thermal scheme simulates shallow convective tracer transport in the PBL over land very efficiently, and much better than previous versions of the model. This result is confirmed in three-dimensional simulations, by a much improved reproduction of the radon-222 diurnal cycle. However, the enhanced dynamics of tracer concentrations induces a stronger sensitivity of the new LMDz configuration to external meteorological forcings. At larger scales, the inter-hemispheric exchange is slightly slower when using the new version of the model, bringing them closer to observations. The increase in the vertical resolution (from 19 to 39 layers) significantly improves the representation of stratosphere/troposphere exchange. Furthermore, changes in atmospheric thermodynamic variables, such as temperature, due to changes in the PBL mixing modify chemical reaction rates, which perturb chemical equilibriums of reactive trace gases. <BR /><BR /> One implication of LMDz model developments for future inversions of greenhouse gas emissions is the ability of the updated system to assimilate a larger amount of high-frequency data sampled at high-variability stations. Others implications are discussed at the end of the paper.

P. Good, J. A. Lowe, T. Andrews, A. Wiltshire, R. Chadwick, J. K. Ridley, M. B. Menary, N. Bouttes, J. L. Dufresne, J. M. Gregory, N. Schaller, and H. Shiogama. Nonlinear regional warming with increasing CO2 concentrations. Nature Climate Change, 5:138-142, February 2015. [ bib | DOI | ADS link ]

When considering adaptation measures and global climate mitigation goals, stakeholders need regional-scale climate projections, including the range of plausible warming rates. To assist these stakeholders, it is important to understand whether some locations may see disproportionately high or low warming from additional forcing above targets such as 2 K (ref. ). There is a need to narrow uncertainty in this nonlinear warming, which requires understanding how climate changes as forcings increase from medium to high levels. However, quantifying and understanding regional nonlinear processes is challenging. Here we show that regional-scale warming can be strongly superlinear to successive CO2 doublings, using five different climate models. Ensemble-mean warming is superlinear over most land locations. Further, the inter-model spread tends to be amplified at higher forcing levels, as nonlinearities grow-especially when considering changes per kelvin of global warming. Regional nonlinearities in surface warming arise from nonlinearities in global-mean radiative balance, the Atlantic meridional overturning circulation, surface snow/ice cover and evapotranspiration. For robust adaptation and mitigation advice, therefore, potentially avoidable climate change (the difference between business-as-usual and mitigation scenarios) and unavoidable climate change (change under strong mitigation scenarios) may need different analysis methods.

V. Oerder, F. Colas, V. Echevin, F. Codron, J. Tam, and A. Belmadani. Peru-Chile upwelling dynamics under climate change. Journal of Geophysical Research (Oceans), 120:1152-1172, February 2015. [ bib | DOI | ADS link ]

The consequences of global warming on the Peru-Chile Current System (PCCS) ocean circulation are examined with a high-resolution, eddy-resolving regional oceanic model. We performed a dynamical downscaling of climate scenarios from the IPSL-CM4 Coupled General Circulation Model (CGCM), corresponding to various levels of CO2 concentrations in the atmosphere. High-resolution atmospheric forcing for the regional ocean model are obtained from the IPSL atmospheric model run on a stretched grid with increased horizontal resolution in the PCCS region. When comparing future scenarios to preindustrial (PI) conditions, the circulation along the Peru and Chile coasts is strongly modified by changes in surface winds and increased stratification caused by the regional warming. While the coastal poleward undercurrent is intensified, the surface equatorial coastal jet shoals and the nearshore mesoscale activity are reinforced. Reduction in alongshore wind stress and nearshore wind stress curl drive a year-round reduction in upwelling intensity off Peru. Modifications in geostrophic circulation mitigate this upwelling decrease in late austral summer. The depth of the upwelling source waters becomes shallower in warmer conditions, which may have a major impact on the system's biological productivity.

A. Berg, B. R. Lintner, K. Findell, S. I. Seneviratne, B. van den Hurk, A. Ducharne, F. Chéruy, S. Hagemann, D. M. Lawrence, S. Malyshev, A. Meier, and P. Gentine. Interannual Coupling between Summertime Surface Temperature and Precipitation over Land: Processes and Implications for Climate Change*. Journal of Climate, 28:1308-1328, February 2015. [ bib | DOI | ADS link ]

R. Wang, Y. Balkanski, O. Boucher, P. Ciais, J. Peñuelas, and S. Tao. Significant contribution of combustion-related emissions to the atmospheric phosphorus budget. Nature Geoscience, 8:48-54, January 2015. [ bib | DOI | ADS link ]

Atmospheric phosphorus fertilizes plants and contributes to Earth's biogeochemical phosphorus cycle. However, calculations of the global budget of atmospheric phosphorus have been unbalanced, with global deposition exceeding estimated emissions from dust and sea-salt transport, volcanic eruptions, biogenic sources and combustion of fossil fuels, biofuels and biomass, the latter of which thought to contribute about 5% of total emissions. Here we use measurements of the phosphorus content of various fuels and estimates of the partitioning of phosphorus during combustion to calculate phosphorus emissions to the atmosphere from all combustion sources. We estimate combustion-related emissions of 1.8 Tg P yr-1, which represent over 50% of global atmospheric sources of phosphorus. Using these estimates in atmospheric transport model simulations, we find that the total global emissions of atmospheric phosphorus (3.5 Tg P yr-1) translate to a depositional sink of 2.7 Tg P yr-1 over land and 0.8 Tg P yr-1 over the oceans. The modelled spatial patterns of phosphorus deposition agree with observations from globally distributed measurement stations, and indicate a near balance of the phosphorus budget. Our finding suggests that the perturbation of the global phosphorus cycle by anthropogenic emissions is larger thanpreviously thought.

Contact information

EMC3 group

LMD/CNRS/UPMC
Case 99
Tour 45-55, 3ème étage
4 Place Jussieu
75252 Paris Cedex 05
FRANCE
Tel: 33 + 1 44 27 27 99
      33 + 6 16 27 34 18 (Dr F. Cheruy)
Tel: 33 + 1 44 27 35 25 (Secretary)
Fax: 33 + 1 44 27 62 72
email: emc3 at lmd.jussieu.fr

Map of our location

Real time LMDZ simulations

Today's LMDZ meteogram for the SIRTA site

Intranet EMC3

Intranet EMC3