Skip to content. | Skip to navigation

Personal tools

Sections
You are here: Home / Publications / Peer-reviewed papers / lmd_Seze2015_bib.html

lmd_Seze2015_bib.html

lmd_Seze2015.bib

@comment{{This file has been generated by bib2bib 1.95}}
@comment{{Command line: /usr/bin/bib2bib --quiet -c 'not journal:"Discussions"' -c 'not journal:"Polymer Science"' -c '  author:"Seze"  or author:"Sèze"  ' -c year=2015 -c $type="ARTICLE" -oc lmd_Seze2015.txt -ob lmd_Seze2015.bib /home/WWW/LMD/public/Publis_LMDEMC3.link.bib}}
@article{2015JGRD..120.2190B,
  author = {{Benetti}, M. and {Aloisi}, G. and {Reverdin}, G. and {Risi}, C. and 
	{Sèze}, G.},
  title = {{Importance of boundary layer mixing for the isotopic composition of surface vapor over the subtropical North Atlantic Ocean}},
  journal = {Journal of Geophysical Research (Atmospheres)},
  keywords = {water isotopes, d-excess, kinetic effects, shallow convection, marine boundary layer, evaporation},
  year = 2015,
  month = mar,
  volume = 120,
  pages = {2190-2209},
  abstract = {{During the summer 2012, we carried out continuous measurements of the
isotopic composition ({$\delta$}) of water vapor over the near-surface
subtropical North Atlantic Ocean (STRASSE cruise). In this region of
excess evaporation, we investigate the control of evaporation and mixing
with a lower troposphere-derived, isotopically depleted air mass on the
near-surface {$\delta$}. We use a simple model to simulate the near-surface
{$\delta$} as the result of a two end-member mixing of the evaporative flux
with free tropospheric air. The evaporative flux {$\delta$} was estimated
by the Craig and Gordon equation while the {$\delta$} of the lower
troposphere was taken from the LMDZ-iso global atmospheric circulation
model. This simulation considers instantaneous mixing of lower
tropospheric air with the evaporated flux and neglects lateral
advection. Despite these simplifications, the simulations allow to
identify the controls on the near-surface {$\delta$}. The d-excess
variability is largely a consequence of varying kinetic effects during
evaporation, even during a convection event when the input of
tropospheric vapor was strong. Kinetic effects and mixing processes
affect simultaneously the near-surface {$\delta$} and result in the vapor
occupying distinct domains in the {$\delta$}$^{18}$O-{$\delta$}D space.
The relative humidity-d-excess relationship shows that the closure
assumption overestimates the d-excess variability at short time scales
(less than a day). We interpret this as due to an effect of the
residence time of the near-surface water vapor on the d-excess. Finally,
we highlight the importance of reproducing mixing processes in models
simulating isotopes over the subtropical North Atlantic Ocean and
propose an extension of the closure assumption for use in initial
conditions of distillation calculations.
}},
  doi = {10.1002/2014JD021947},
  adsurl = {http://adsabs.harvard.edu/abs/2015JGRD..120.2190B},
  adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
Contact information

EMC3 group

LMD/CNRS/UPMC
Case 99
Tour 45-55, 3ème étage
4 Place Jussieu
75252 Paris Cedex 05
FRANCE
Tel: 33 + 1 44 27 27 99
      33 + 6 16 27 34 18 (Dr F. Cheruy)
Tel: 33 + 1 44 27 35 25 (Secretary)
Fax: 33 + 1 44 27 62 72
email: emc3 at lmd.jussieu.fr

Map of our location

EUREC4A campaign

logo_eurec4a.fc481ace.png

Click the above logo for
the operationnal center.
Today's LMDZ meteogram

Upcoming Events
2020-03-30: François Forget et JL Dufresne Mar 30, 2020 02:30 PM - 04:00 PM
2020-04-06: Apr 06, 2020 02:30 PM - 04:00 PM
2020-04-13: Annulé - Pâques Apr 13, 2020 02:30 PM - 04:00 PM
2020-04-20: Sébastien Nguyen Apr 20, 2020 02:30 PM - 04:00 PM
Upcoming events…