Skip to content. | Skip to navigation

Personal tools

Sections
You are here: Home / Publications / Peer-reviewed papers / lmd_Madeleine2010_abstracts.html

lmd_Madeleine2010_abstracts.html

2010 .

(2 publications)

R. D. Wordsworth, F. Forget, F. Selsis, J.-B. Madeleine, E. Millour, and V. Eymet. Is Gliese 581d habitable? Some constraints from radiative-convective climate modeling. Astronomy Astrophysics, 522:A22, November 2010. [ bib | DOI | arXiv | ADS link ]

The recently discovered exoplanet Gl 581d is extremely close to the outer edge of its system's habitable zone, which has led to much speculation on its possible climate. We have performed a range of simulations to assess whether, given simple combinations of chemically stable greenhouse gases, the planet could sustain liquid water on its surface. For best estimates of the surface gravity, surface albedo and cloud coverage, we find that less than 10 bars of CO2 is sufficient to maintain a global mean temperature above the melting point of water. Furthermore, even with the most conservative choices of these parameters, we calculate temperatures above the water melting point for CO2 partial pressures greater than about 40 bar. However, we note that as Gl 581d is probably in a tidally resonant orbit, further simulations in 3D are required to test whether such atmospheric conditions are stable against the collapse of CO2 on the surface.

G. A. Morgan, J. W. Head, F. Forget, J.-B. Madeleine, and A. Spiga. Gully formation on Mars: Two recent phases of formation suggested by links between morphology, slope orientation and insolation history. Icarus, 208:658-666, August 2010. [ bib | DOI | ADS link ]

The unusual 80 km diameter Noachian-aged Asimov crater in Noachis Terra (46degS, 5degE) is characterized by extensive Noachian-Hesperian crater fill and a younger superposed annulus of valleys encircling the margins of the crater floor. These valleys provide an opportunity to study the relationships of gully geomorphology as a function of changing slope orientation relative to solar insolation. We found that the level of development of gullies was highly correlated with slope orientation and solar insolation. The largest and most complex gully systems, with the most well-developed fluvial landforms, are restricted to pole-facing slopes. In contrast, gullies on equator-facing slopes are smaller, more poorly developed and integrated, more highly degraded, and contain more impact craters. We used a 1D version of the Laboratoire de Météorologie Dynamique GCM, and slope geometries (orientation and angle), driven by predicted spin-axis/orbital parameter history, to assess the distribution and history of surface temperatures in these valleys during recent geological history. Surface temperatures on pole-facing slopes preferential for water ice accumulation and subsequent melting are predicted to occur as recently as 0.5-2.1 Ma, which is consistent with age estimates of gully activity elsewhere on Mars. In contrast, the 1D model predicts that water ice cannot accumulate on equator-facing slopes until obliquities exceed 45deg, suggesting they are unlikely to have been active over the last 5 Ma. The correlation of the temperature predictions and the geological evidence for age differences suggests that there were two phases of gully formation in the last few million years: an older phase in which top-down melting occurred on equator-facing slopes and a younger more robust phase on pole-facing slopes. The similarities of small-scale fluvial erosion features seen in the gullies on Mars and those observed in gullies cut by seasonal and perennial snowmelt in the Antarctic Dry Valleys supports a top-down melting origin for these gullies on Mars.

Contact information

EMC3 group

LMD/CNRS/UPMC
Case 99
Tour 45-55, 3ème étage
4 Place Jussieu
75252 Paris Cedex 05
FRANCE
Tel: 33 + 1 44 27 27 99
      33 + 6 16 27 34 18 (Dr F. Cheruy)
Tel: 33 + 1 44 27 35 25 (Secretary)
Fax: 33 + 1 44 27 62 72
email: emc3 at lmd.jussieu.fr

Map of our location

Real time LMDZ simulations

Today's LMDZ meteogram for the SIRTA site

Intranet EMC3

Intranet EMC3