Skip to content. | Skip to navigation

Personal tools

You are here: Home / Publications / Peer-reviewed papers / lmd_Laval1981_abstracts.html


1981 .

(2 publications)

K. Laval, R. Sadourny, and Y. Serafini. Land surface processes in a simplified general circulation model. Geophysical and Astrophysical Fluid Dynamics, 17:129-150, 1981. [ bib | DOI | ADS link ]

The land surface processes as parameterized for the current version of the L.M.D. General Circulation Model are described. The model predicts ground temperature for bare soil, ice and snow; the treatment of ground hydrology involves a prediction of soil moisture and snow depth. The parameterization is tested on a 90-day integration using a sectorial model with artificial modelling of continents and orography; sea surface temperature, surface albedo and ice cover are given assigned values based on climatological data for January. The resulting distributions of hydrological and thermodynamic variables at the Earth's surface are discussed.

K. Laval, H. Le Treut, and R. Sadourny. Effect of cumulus parameterization on the dynamics of a general circulation model. Geophysical and Astrophysical Fluid Dynamics, 17:113-127, 1981. [ bib | DOI | ADS link ]

The purpose of this study is to test a modification of the parameterization of convection in a general circulation model. The analysis is done with a sectorial model. Its resolution is 11 levels and 1625 grid points. In version A of the model, we use a moist convective adjustment (M.C.A.) wherever the air is conditionally unstable and saturated; in version B, we add a convective scheme to M.C.A. in the case of conditionally unstable but not saturated air. This last scheme is based on the parameterization of Kuo (1965). We compare zonal means and energy cycles of the two versions; improvements in version B seem substantial, essentially in latitude-height distribution of energy variables.

Contact information

EMC3 group

Case 99
Tour 45-55, 3ème étage
4 Place Jussieu
75252 Paris Cedex 05
Tel: 33 + 1 44 27 27 99
      33 + 6 16 27 34 18 (Dr F. Cheruy)
Tel: 33 + 1 44 27 35 25 (Secretary)
Fax: 33 + 1 44 27 62 72
email: emc3 at

Map of our location

Real time LMDZ simulations

Today's LMDZ meteogram for the SIRTA site

Intranet EMC3

Intranet EMC3