lmd_Risi2011_abstracts.html

2011 .

(6 publications)

N. Kurita, D. Noone, C. Risi, G. A. Schmidt, H. Yamada, and K. Yoneyama. Intraseasonal isotopic variation associated with the Madden-Julian Oscillation. Journal of Geophysical Research (Atmospheres), 116:24101, December 2011. [ bib | DOI | ADS link ]

The Madden-Julian Oscillation (MJO) is the dominant mode of intraseasonal variability in the tropical atmosphere. This study examines the evolution of the hydrologic regime from before the onset of the MJO (pre-onset period) to the MJO onset period, using deuterated water vapor (HDO) measurements from the Tropospheric Emission Spectrometer (TES) and from ground-based stations. Ground-based observations reveal a clear transition between high HDO/H2O isotope ratios during the pre-onset period to a period of repeated abrupt decreases in the HDO/H2O isotope ratio associated with intense convection. Each observed minimum in the HDO/H2O ratio corresponded to a maximum in stratiform rainfall fraction, which was derived independently from radar precipitation coverage area. The ground-based observations are consistent with the satellite observations of the HDO/H2O ratio. In order to attribute the mechanisms that bring about the isotopic changes within the MJO convection, an isotope-enabled general circulation model (GCM) constrained by observed meteorological fields was used to simulate this MJO period. The GCM reproduced many of the observed isotopic features that accompanied the onset of an MJO. After the development of deep convection, large-scale stratiform cloud cover appears, and isotope ratios respond, as a consequence of diffusive exchange between stratiform raindrops and the surrounding vapor. In this diffusive exchange process, heavy isotopes tend to become enriched in precipitation and depleted in the surrounding vapor, and thus successive stratiform rainfall results in decreasing isotope values in the middle and lower troposphere. On the basis of these characteristics, isotope tracers can be used to partition stratiform and convective rainfall from observed isotope data and to validate the simulated proportions of convective/stratiform rainfall.

V. Masson-Delmotte, P. Braconnot, G. Hoffmann, J. Jouzel, M. Kageyama, A. Landais, Q. Lejeune, C. Risi, L. Sime, J. Sjolte, D. Swingedouw, and B. Vinther. Sensitivity of interglacial Greenland temperature and δ18O: ice core data, orbital and increased CO2 climate simulations. Climate of the Past, 7:1041-1059, September 2011. [ bib | DOI | ADS link ]

The sensitivity of interglacial Greenland temperature to orbital and CO2 forcing is investigated using the NorthGRIP ice core data and coupled ocean-atmosphere IPSL-CM4 model simulations. These simulations were conducted in response to different interglacial orbital configurations, and to increased CO2 concentrations. These different forcings cause very distinct simulated seasonal and latitudinal temperature and water cycle changes, limiting the analogies between the last interglacial and future climate. However, the IPSL-CM4 model shows similar magnitudes of Arctic summer warming and climate feedbacks in response to 2 × CO2 and orbital forcing of the last interglacial period (126 000 years ago). <BR /><BR /> The IPSL-CM4 model produces a remarkably linear relationship between TOA incoming summer solar radiation and simulated changes in summer and annual mean central Greenland temperature. This contrasts with the stable isotope record from the Greenland ice cores, showing a multi-millennial lagged response to summer insolation. During the early part of interglacials, the observed lags may be explained by ice sheet-ocean feedbacks linked with changes in ice sheet elevation and the impact of meltwater on ocean circulation, as investigated with sensitivity studies. <BR /><BR /> A quantitative comparison between ice core data and climate simulations requires stability of the stable isotope - temperature relationship to be explored. Atmospheric simulations including water stable isotopes have been conducted with the LMDZiso model under different boundary conditions. This set of simulations allows calculation of a temporal Greenland isotope-temperature slope (0.3-0.4 per degC) during warmer-than-present Arctic climates, in response to increased CO2, increased ocean temperature and orbital forcing. This temporal slope appears half as large as the modern spatial gradient and is consistent with other ice core estimates. It may, however, be model-dependent, as indicated by preliminary comparison with other models. This suggests that further simulations and detailed inter-model comparisons are also likely to be of benefit. <BR /><BR /> Comparisons with Greenland ice core stable isotope data reveals that IPSL-CM4/LMDZiso simulations strongly underestimate the amplitude of the ice core signal during the last interglacial, which could reach +8-10 degC at fixed-elevation. While the model-data mismatch may result from missing positive feedbacks (e.g. vegetation), it could also be explained by a reduced elevation of the central Greenland ice sheet surface by 300-400 m.

J. Gao, V. Masson-Delmotte, T. Yao, L. Tian, C. Risi, and G. Hoffmann. Precipitation Water Stable Isotopes in the South Tibetan Plateau: Observations and Modeling*. Journal of Climate, 24:3161-3178, July 2011. [ bib | DOI | ADS link ]

F. Vimeux, G. Tremoy, C. Risi, and R. Gallaire. A strong control of the South American SeeSaw on the intra-seasonal variability of the isotopic composition of precipitation in the Bolivian Andes. Earth and Planetary Science Letters, 307:47-58, July 2011. [ bib | DOI | ADS link ]

Water stable isotopes (δ) in tropical regions are a valuable tool to study both convective processes and climate variability provided that local and remote controls on δ are well known. Here, we examine the intra-seasonal variability of the event-based isotopic composition of precipitation (δD Zongo) in the Bolivian Andes (Zongo valley, 16deg20'S-67deg47'W) from September 1st, 1999 to August 31st, 2000. We show that the local amount effect is a very poor parameter to explain δD Zongo. We thus explore the property of water isotopes to integrate both temporal and spatial convective activities. We first show that the local convective activity averaged over the 7-8 days preceding the rainy event is an important control on δD Zongo during the rainy season (˜ 40% of the δD Zongo variability is captured). This could be explained by the progressive depletion of local water vapor by unsaturated downdrafts of convective systems. The exploration of remote convective controls on δD Zongo shows a strong influence of the South American SeeSaw (SASS) which is the first climate mode controlling the precipitation variability in tropical South America during austral summer. Our study clearly evidences that temporal and spatial controls are not fully independent as the 7-day averaged convection in the Zongo valley responds to the SASS. Our results are finally used to evaluate a water isotope enabled atmospheric general circulation model (LMDZ-iso), using the stretched grid functionality to run zoomed simulations over the entire South American continent (15degN-55degS; 30deg-85degW). We find that zoomed simulations capture the intra-seasonal isotopic variation and its controls, though with an overestimated local sensitivity, and confirm the role of a remote control on δ according to a SASS-like dipolar structure.

H. C. Steen-Larsen, V. Masson-Delmotte, J. Sjolte, S. J. Johnsen, B. M. Vinther, F.-M. BréOn, H. B. Clausen, D. Dahl-Jensen, S. Falourd, X. Fettweis, H. GalléE, J. Jouzel, M. Kageyama, H. Lerche, B. Minster, G. Picard, H. J. Punge, C. Risi, D. Salas, J. Schwander, K. Steffen, A. E. SveinbjöRnsdóttir, A. Svensson, and J. White. Understanding the climatic signal in the water stable isotope records from the NEEM shallow firn/ice cores in northwest Greenland. Journal of Geophysical Research (Atmospheres), 116:6108, March 2011. [ bib | DOI | ADS link ]

Samples of precipitation and atmospheric water vapor were collected together with shallow firn/ice cores as part of the new deep drilling project in northwest Greenland: the NEEM project. These samples were analyzed for their isotope composition to understand the processes affecting the climatic signal archived in the water stable isotope records from the NEEM deep ice core. The dominant moisture source for the snow deposited at the NEEM-site may be originating as far south as 35degN from the western part of the Atlantic Ocean. The surface atmospheric water vapor appears in isotopic equilibrium with the snow surface indicating a large water exchange between the atmosphere and snowpack. The interannual variability of NEEM shallow firn/ice cores stable isotope data covering the last 40 years shows an unexpectedly weak NAO signal. Regional to global atmospheric models simulate a dominant summer precipitation in the NEEM area, suggesting that the intermittency of modern winter precipitation is responsible for the lack of a strong NAO imprint. The interannual variability of NEEM isotope data however shows a strong correlation with interannual variations of Baffin Bay sea ice cover, a relationship consistent with air mass trajectories. NEEM deep ice core isotopic records may therefore provide detailed information on past Baffin Bay sea ice extent. NEEM stable water isotope content increasing trend points to a local warming trend of 3.0degC over the last 40 years.

C. Shi, V. Masson-Delmotte, C. Risi, T. Eglin, M. Stievenard, M. Pierre, X. Wang, J. Gao, F.-M. Bréon, Q.-B. Zhang, and V. Daux. Sampling strategy and climatic implications of tree-ring stable isotopes on the southeast Tibetan Plateau. Earth and Planetary Science Letters, 301:307-316, January 2011. [ bib | DOI | ADS link ]

We explore the potential of tree-ring cellulose δ18O and δ13C records for reconstructing climate variability in the southeast Tibetan Plateau. Our sampling strategy was designed to investigate intra and inter-tree variability, and the effects of the age of tree on δ18O variation. We show that intra-tree δ13C and δ18O variability is negligible, and inter-tree coherence is sufficient to build robust tree-ring δ18O or δ13C chronologies based on only four trees. There is no evidence of an age effect regarding δ18O, in contrast with tree-ring width. In our warm and moist sampling site, young tree δ13C is not clearly correlated with monthly mean meteorological data. Tree-ring δ18O appears significantly anti-correlated with summer precipitation amount, regional cloud cover, and relative humidity. Simulations conducted with the ORCHIDEE land surface model confirm the observed contribution of relative humidity to tree cellulose δ18O, and explain the weak correlation of δ13C with climate by the non-linear integration linked with photosynthesis. Altogether, the tree-ring cellulose δ18O is shown to be a promising proxy to reconstruct regional summer moisture variability prior to the instrumental period.