lmd_Madeleine2014_abstracts.html

2014 .

(2 publications)

T. Navarro, J.-B. Madeleine, F. Forget, A. Spiga, E. Millour, F. Montmessin, and A. Määttänen. Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds. Journal of Geophysical Research (Planets), 119:1479-1495, July 2014. [ bib | DOI | arXiv | ADS link ]

Water ice clouds play a key role in the radiative transfer of the Martian atmosphere, impacting its thermal structure, its circulation, and, in turn, the water cycle. Recent studies including the radiative effects of clouds in global climate models (GCMs) have found that the corresponding feedbacks amplify the model defaults. In particular, it prevents models with simple microphysics from reproducing even the basic characteristics of the water cycle. Within that context, we propose a new implementation of the water cycle in GCMs, including a detailed cloud microphysics taking into account nucleation on dust particles, ice particle growth, and scavenging of dust particles due to the condensation of ice. We implement these new methods in the Laboratoire de Météorologie Dynamique GCM and find satisfying agreement with the Thermal Emission Spectrometer observations of both water vapor and cloud opacities, with a significant improvement when compared to GCMs taking into account radiative effects of water ice clouds without this implementation. However, a lack of water vapor in the tropics after Ls = 180deg is persistent in simulations compared to observations, as a consequence of aphelion cloud radiative effects strengthening the Hadley cell. Our improvements also allow us to explore questions raised by recent observations of the Martian atmosphere. Supersaturation above the hygropause is predicted in line with Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars observations. The model also suggests for the first time that the scavenging of dust by water ice clouds alone fails to fully account for the detached dust layers observed by the Mars Climate Sounder.

J.-B. Madeleine, J. W. Head, F. Forget, T. Navarro, E. Millour, A. Spiga, A. Colaïtis, A. Määttänen, F. Montmessin, and J. L. Dickson. Recent Ice Ages on Mars: The role of radiatively active clouds and cloud microphysics. Geophysical Research Letters, 41:4873-4879, July 2014. [ bib | DOI | ADS link ]

Global climate models (GCMs) have been successfully employed to explain the origin of many glacial deposits on Mars. However, the latitude-dependent mantle (LDM), a dust-ice mantling deposit that is thought to represent a recent ”Ice Age,” remains poorly explained by GCMs. We reexamine this question by considering the effect of radiatively active water-ice clouds (RACs) and cloud microphysics. We find that when obliquity is set to 35deg, as often occurred in the past 2 million years, warming of the atmosphere and polar caps by clouds modifies the water cycle and leads to the formation of a several centimeter-thick ice mantle poleward of 30deg in each hemisphere during winter. This mantle can be preserved over the summer if increased atmospheric dust content obscures the surface and provides dust nuclei to low-altitude clouds. We outline a scenario for its deposition and preservation that compares favorably with the characteristics of the LDM.