lmd_Dufresne2013_abstracts.html
2013 .
(12 publications)M. Zhang, C. S. Bretherton, P. N. Blossey, P. H. Austin, J. T. Bacmeister, S. Bony, F. Brient, S. K. Cheedela, A. Cheng, A. D. Genio, S. R. Roode, S. Endo, C. N. Franklin, J.-C. Golaz, C. Hannay, T. Heus, F. A. Isotta, J.-L. Dufresne, I.-S. Kang, H. Kawai, M. Köhler, V. E. Larson, Y. Liu, A. P. Lock, U. Lohmann, M. F. Khairoutdinov, A. M. Molod, R. A. J. Neggers, P. Rasch, I. Sandu, R. Senkbeil, A. P. Siebesma, C. Siegenthaler-Le Drian, B. Stevens, M. J. Suarez, K.-M. Xu, K. Salzen, M. J. Webb, A. Wolf, and M. Zhao. CGILS: Results from the first phase of an international project to understand the physical mechanisms of low cloud feedbacks in single column models. Journal of Advances in Modeling Earth Systems, 5:826-842, December 2013. [ bib | DOI | ADS link ]
CGILSthe CFMIP-GASS Intercomparison of Large Eddy Models (LESs) and single column models (SCMs)investigates the mechanisms of cloud feedback in SCMs and LESs under idealized climate change perturbation. This paper describes the CGILS results from 15 SCMs and 8 LES models. Three cloud regimes over the subtropical oceans are studied: shallow cumulus, cumulus under stratocumulus, and well-mixed coastal stratus/stratocumulus. In the stratocumulus and coastal stratus regimes, SCMs without activated shallow convection generally simulated negative cloud feedbacks, while models with active shallow convection generally simulated positive cloud feedbacks. In the shallow cumulus alone regime, this relationship is less clear, likely due to the changes in cloud depth, lateral mixing, and precipitation or a combination of them. The majority of LES models simulated negative cloud feedback in the well-mixed coastal stratus/stratocumulus regime, and positive feedback in the shallow cumulus and stratocumulus regime. A general framework is provided to interpret SCM results: in a warmer climate, the moistening rate of the cloudy layer associated with the surface-based turbulence parameterization is enhanced; together with weaker large-scale subsidence, it causes negative cloud feedback. In contrast, in the warmer climate, the drying rate associated with the shallow convection scheme is enhanced. This causes positive cloud feedback. These mechanisms are summarized as the ”NESTS” negative cloud feedback and the ”SCOPE” positive cloud feedback (Negative feedback from Surface Turbulence under weaker SubsidenceShallow Convection PositivE feedback) with the net cloud feedback depending on how the two opposing effects counteract each other. The LES results are consistent with these interpretations.
J. Vial, J.-L. Dufresne, and S. Bony. On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Climate Dynamics, 41:3339-3362, December 2013. [ bib | DOI | ADS link ]
This study diagnoses the climate sensitivity, radiative forcing and climate feedback estimates from eleven general circulation models participating in the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5), and analyzes inter-model differences. This is done by taking into account the fact that the climate response to increased carbon dioxide (CO2) is not necessarily only mediated by surface temperature changes, but can also result from fast land warming and tropospheric adjustments to the CO2 radiative forcing. By considering tropospheric adjustments to CO2 as part of the forcing rather than as feedbacks, and by using the radiative kernels approach, we decompose climate sensitivity estimates in terms of feedbacks and adjustments associated with water vapor, temperature lapse rate, surface albedo and clouds. Cloud adjustment to CO2 is, with one exception, generally positive, and is associated with a reduced strength of the cloud feedback; the multi-model mean cloud feedback is about 33 % weaker. Non-cloud adjustments associated with temperature, water vapor and albedo seem, however, to be better understood as responses to land surface warming. Separating out the tropospheric adjustments does not significantly affect the spread in climate sensitivity estimates, which primarily results from differing climate feedbacks. About 70 % of the spread stems from the cloud feedback, which remains the major source of inter-model spread in climate sensitivity, with a large contribution from the tropics. Differences in tropical cloud feedbacks between low-sensitivity and high-sensitivity models occur over a large range of dynamical regimes, but primarily arise from the regimes associated with a predominance of shallow cumulus and stratocumulus clouds. The combined water vapor plus lapse rate feedback also contributes to the spread of climate sensitivity estimates, with inter-model differences arising primarily from the relative humidity responses throughout the troposphere. Finally, this study points to a substantial role of nonlinearities in the calculation of adjustments and feedbacks for the interpretation of inter-model spread in climate sensitivity estimates. We show that in climate model simulations with large forcing (e.g., 4 × CO2), nonlinearities cannot be assumed minor nor neglected. Having said that, most results presented here are consistent with a number of previous feedback studies, despite the very different nature of the methodologies and all the uncertainties associated with them.
A. Lahellec and J.-L. Dufresne. A Formal Analysis of the Feedback Concept in Climate Models. Part I: Exclusive and Inclusive Feedback Analyses. Journal of Atmospheric Sciences, 70:3940-3958, December 2013. [ bib | DOI | ADS link ]
Climate sensitivity and feedback are key concepts if the complex behavior of climate response to perturbation is to be interpreted in a simple way. They have also become an essential tool for comparing global circulation models and assessing the reason for the spread in their results. The authors introduce a formal basic model to analyze the practical methods used to infer climate feedbacks and sensitivity from GCMs. The tangent linear model is used first to critically review the standard methods of feedback analyses that have been used in the GCM community for 40 years now. This leads the authors to distinguish between exclusive feedback analyses as in the partial radiative perturbation approach and inclusive analyses as in the ”feedback suppression” methods. This review explains the hypotheses needed to apply these methods with confidence. Attention is paid to the more recent regression technique applied to the abrupt 2-CO2 experiment. A numerical evaluation of it is given, related to the Lyapunov analysis of the dynamical feature of the regression. It is applied to the Planck response, determined in its most strict definition within the GCM. In this approach, the Planck feedback becomes a dynamical feedback among others and, as such, also has a fast response differing from its steady-state profile.
L. Tomassini, O. Geoffroy, J.-L. Dufresne, A. Idelkadi, C. Cagnazzo, K. Block, T. Mauritsen, M. Giorgetta, and J. Quaas. The respective roles of surface temperature driven feedbacks and tropospheric adjustment to CO2 in CMIP5 transient climate simulations. Climate Dynamics, 41:3103-3126, December 2013. [ bib | DOI | ADS link ]
An overview of radiative climate feedbacks and ocean heat uptake efficiency diagnosed from idealized transient climate change experiments of 14 CMIP5 models is presented. Feedbacks explain about two times more variance in transient climate response across the models than ocean heat uptake efficiency. Cloud feedbacks can clearly be identified as the main source of inter-model spread. Models with strong longwave feedbacks in the tropics feature substantial increases in cloud ice around the tropopause suggestive of changes in cloud-top heights. The lifting of the tropical tropopause goes together with a general weakening of the tropical circulation. Distinctive inter-model differences in cloud shortwave feedbacks occur in the subtropics including the equatorward flanks of the storm-tracks. Related cloud fraction changes are not confined to low clouds but comprise middle level clouds as well. A reduction in relative humidity through the lower and mid troposphere can be identified as being the main associated large-scale feature. Experiments with prescribed sea surface temperatures are analyzed in order to investigate whether the diagnosed feedbacks from the transient climate simulations contain a tropospheric adjustment component that is not conveyed through the surface temperature response. The strengths of the climate feedbacks computed from atmosphere-only experiments with prescribed increases in sea surface temperatures, but fixed CO2 concentrations, are close to the ones derived from the transient experiment. Only the cloud shortwave feedback exhibits discernible differences which, however, can not unequivocally be attributed to tropospheric adjustment to CO2. Although for some models a tropospheric adjustment component is present in the global mean shortwave cloud feedback, an analysis of spatial patterns does not lend support to the view that cloud feedbacks are dominated by their tropospheric adjustment part. Nevertheless, there is positive correlation between the strength of tropospheric adjustment processes and cloud feedbacks across different climate models.
S. I. Seneviratne, M. Wilhelm, T. Stanelle, B. Hurk, S. Hagemann, A. Berg, F. Cheruy, M. E. Higgins, A. Meier, V. Brovkin, M. Claussen, A. Ducharne, J.-L. Dufresne, K. L. Findell, J. Ghattas, D. M. Lawrence, S. Malyshev, M. Rummukainen, and B. Smith. Impact of soil moisture-climate feedbacks on CMIP5 projections: First results from the GLACE-CMIP5 experiment. Geophysical Research Letters, 40:5212-5217, October 2013. [ bib | DOI | ADS link ]
Global Land-Atmosphere Climate Experiment-Coupled Model Intercomparison Project phase 5 (GLACE-CMIP5) is a multimodel experiment investigating the impact of soil moisture-climate feedbacks in CMIP5 projections. We present here first GLACE-CMIP5 results based on five Earth System Models, focusing on impacts of projected changes in regional soil moisture dryness (mostly increases) on late 21st century climate. Projected soil moisture changes substantially impact climate in several regions in both boreal and austral summer. Strong and consistent effects are found on temperature, especially for extremes (about 1-1.5 K for mean temperature and 2-2.5 K for extreme daytime temperature). In the Northern Hemisphere, effects on mean and heavy precipitation are also found in most models, but the results are less consistent than for temperature. A direct scaling between soil moisture-induced changes in evaporative cooling and resulting changes in temperature mean and extremes is found in the simulations. In the Mediterranean region, the projected soil moisture changes affect about 25% of the projected changes in extreme temperature.
T. P Sabin, R. Krishnan, J. Ghattas, S. Denvil, J.-L. Dufresne, F. Hourdin, and T. Pascal. High resolution simulation of the South Asian monsoon using a variable resolution global climate model. Climate Dynamics, 41:173-194, July 2013. [ bib | DOI | ADS link ]
This study examines the feasibility of using a variable resolution global general circulation model (GCM), with telescopic zooming and enhanced resolution (˜35 km) over South Asia, to better understand regional aspects of the South Asian monsoon rainfall distribution and the interactions between monsoon circulation and precipitation. For this purpose, two sets of ten member realizations are produced with and without zooming using the LMDZ (Laboratoire Meteorologie Dynamique and Z stands for zoom) GCM. The simulations without zoom correspond to a uniform 1deg × 1deg grid with the same total number of grid points as in the zoom version. So the grid of the zoomed simulations is finer inside the region of interest but coarser outside. The use of these finer and coarser resolution ensemble members allows us to examine the impact of resolution on the overall quality of the simulated regional monsoon fields. It is found that the monsoon simulation with high-resolution zooming greatly improves the representation of the southwesterly monsoon flow and the heavy precipitation along the narrow orography of the Western Ghats, the northeastern mountain slopes and northern Bay of Bengal (BOB). A realistic Monsoon Trough (MT) is also noticed in the zoomed simulation, together with remarkable improvements in representing the associated precipitation and circulation features, as well as the large-scale organization of meso-scale convective systems over the MT region. Additionally, a more reasonable simulation of the monsoon synoptic disturbances (lows and disturbances) along the MT is noted in the high-resolution zoomed simulation. On the other hand, the no-zoom version has limitations in capturing the depressions and their movement, so that the MT zone is relatively dry in this case. Overall, the results from this work demonstrate the usefulness of the high-resolution variable resolution LMDZ model in realistically capturing the interactions among the monsoon large-scale dynamics, the synoptic systems and the meso-scale convective systems, which are essential elements of the South Asian monsoon system.
J.-L. Dufresne, M.-A. Foujols, S. Denvil, A. Caubel, O. Marti, O. Aumont, Y. Balkanski, S. Bekki, H. Bellenger, R. Benshila, S. Bony, L. Bopp, P. Braconnot, P. Brockmann, P. Cadule, F. Cheruy, F. Codron, A. Cozic, D. Cugnet, N. de Noblet, J.-P. Duvel, C. Ethé, L. Fairhead, T. Fichefet, S. Flavoni, P. Friedlingstein, J.-Y. Grandpeix, L. Guez, E. Guilyardi, D. Hauglustaine, F. Hourdin, A. Idelkadi, J. Ghattas, S. Joussaume, M. Kageyama, G. Krinner, S. Labetoulle, A. Lahellec, M.-P. Lefebvre, F. Lefevre, C. Levy, Z. X. Li, J. Lloyd, F. Lott, G. Madec, M. Mancip, M. Marchand, S. Masson, Y. Meurdesoif, J. Mignot, I. Musat, S. Parouty, J. Polcher, C. Rio, M. Schulz, D. Swingedouw, S. Szopa, C. Talandier, P. Terray, N. Viovy, and N. Vuichard. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Climate Dynamics, 40:2123-2165, May 2013. [ bib | DOI | ADS link ]
We present the global general circulation model IPSL-CM5 developed to study the long-term response of the climate system to natural and anthropogenic forcings as part of the 5th Phase of the Coupled Model Intercomparison Project (CMIP5). This model includes an interactive carbon cycle, a representation of tropospheric and stratospheric chemistry, and a comprehensive representation of aerosols. As it represents the principal dynamical, physical, and bio-geochemical processes relevant to the climate system, it may be referred to as an Earth System Model. However, the IPSL-CM5 model may be used in a multitude of configurations associated with different boundary conditions and with a range of complexities in terms of processes and interactions. This paper presents an overview of the different model components and explains how they were coupled and used to simulate historical climate changes over the past 150 years and different scenarios of future climate change. A single version of the IPSL-CM5 model (IPSL-CM5A-LR) was used to provide climate projections associated with different socio-economic scenarios, including the different Representative Concentration Pathways considered by CMIP5 and several scenarios from the Special Report on Emission Scenarios considered by CMIP3. Results suggest that the magnitude of global warming projections primarily depends on the socio-economic scenario considered, that there is potential for an aggressive mitigation policy to limit global warming to about two degrees, and that the behavior of some components of the climate system such as the Arctic sea ice and the Atlantic Meridional Overturning Circulation may change drastically by the end of the twenty-first century in the case of a no climate policy scenario. Although the magnitude of regional temperature and precipitation changes depends fairly linearly on the magnitude of the projected global warming (and thus on the scenario considered), the geographical pattern of these changes is strikingly similar for the different scenarios. The representation of atmospheric physical processes in the model is shown to strongly influence the simulated climate variability and both the magnitude and pattern of the projected climate changes.
F. Hourdin, J.-Y. Grandpeix, C. Rio, S. Bony, A. Jam, F. Cheruy, N. Rochetin, L. Fairhead, A. Idelkadi, I. Musat, J.-L. Dufresne, A. Lahellec, M.-P. Lefebvre, and R. Roehrig. LMDZ5B: the atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection. Climate Dynamics, 40:2193-2222, May 2013. [ bib | DOI | ADS link ]
Based on a decade of research on cloud processes, a new version of the LMDZ atmospheric general circulation model has been developed that corresponds to a complete recasting of the parameterization of turbulence, convection and clouds. This LMDZ5B version includes a mass-flux representation of the thermal plumes or rolls of the convective boundary layer, coupled to a bi-Gaussian statistical cloud scheme, as well as a parameterization of the cold pools generated below cumulonimbus by re-evaporation of convective precipitation. The triggering and closure of deep convection are now controlled by lifting processes in the sub-cloud layer. An available lifting energy and lifting power are provided both by the thermal plumes and by the spread of cold pools. The individual parameterizations were carefully validated against the results of explicit high resolution simulations. Here we present the work done to go from those new concepts and developments to a full 3D atmospheric model, used in particular for climate change projections with the IPSL-CM5B coupled model. Based on a series of sensitivity experiments, we document the differences with the previous LMDZ5A version distinguishing the role of parameterization changes from that of model tuning. Improvements found previously in single-column simulations of case studies are confirmed in the 3D model: (1) the convective boundary layer and cumulus clouds are better represented and (2) the diurnal cycle of convective rainfall over continents is delayed by several hours, solving a longstanding problem in climate modeling. The variability of tropical rainfall is also larger in LMDZ5B at intraseasonal time-scales. Significant biases of the LMDZ5A model however remain, or are even sometimes amplified. The paper emphasizes the importance of parameterization improvements and model tuning in the frame of climate change studies as well as the new paradigm that represents the improvement of 3D climate models under the control of single-column case studies simulations.
F. Hourdin, M.-A. Foujols, F. Codron, V. Guemas, J.-L. Dufresne, S. Bony, S. Denvil, L. Guez, F. Lott, J. Ghattas, P. Braconnot, O. Marti, Y. Meurdesoif, and L. Bopp. Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model. Climate Dynamics, 40:2167-2192, May 2013. [ bib | DOI | ADS link ]
The IPSL-CM5A climate model was used to perform a large number of control, historical and climate change simulations in the frame of CMIP5. The refined horizontal and vertical grid of the atmospheric component, LMDZ, constitutes a major difference compared to the previous IPSL-CM4 version used for CMIP3. From imposed-SST (Sea Surface Temperature) and coupled numerical experiments, we systematically analyze the impact of the horizontal and vertical grid resolution on the simulated climate. The refinement of the horizontal grid results in a systematic reduction of major biases in the mean tropospheric structures and SST. The mid-latitude jets, located too close to the equator with the coarsest grids, move poleward. This robust feature, is accompanied by a drying at mid-latitudes and a reduction of cold biases in mid-latitudes relative to the equator. The model was also extended to the stratosphere by increasing the number of layers on the vertical from 19 to 39 (15 in the stratosphere) and adding relevant parameterizations. The 39-layer version captures the dominant modes of the stratospheric variability and exhibits stratospheric sudden warmings. Changing either the vertical or horizontal resolution modifies the global energy balance in imposed-SST simulations by typically several W/m2 which translates in the coupled atmosphere-ocean simulations into a different global-mean SST. The sensitivity is of about 1.2 K per 1 W/m2 when varying the horizontal grid. A re-tuning of model parameters was thus required to restore this energy balance in the imposed-SST simulations and reduce the biases in the simulated mean surface temperature and, to some extent, latitudinal SST variations in the coupled experiments for the modern climate. The tuning hardly compensates, however, for robust biases of the coupled model. Despite the wide range of grid configurations explored and their significant impact on the present-day climate, the climate sensitivity remains essentially unchanged.
S. Szopa, Y. Balkanski, M. Schulz, S. Bekki, D. Cugnet, A. Fortems-Cheiney, S. Turquety, A. Cozic, C. Déandreis, D. Hauglustaine, A. Idelkadi, J. Lathière, F. Lefevre, M. Marchand, R. Vuolo, N. Yan, and J.-L. Dufresne. Aerosol and ozone changes as forcing for climate evolution between 1850 and 2100. Climate Dynamics, 40:2223-2250, May 2013. [ bib | DOI | ADS link ]
Global aerosol and ozone distributions and their associated radiative forcings were simulated between 1850 and 2100 following a recent historical emission dataset and under the representative concentration pathways (RCP) for the future. These simulations were used in an Earth System Model to account for the changes in both radiatively and chemically active compounds, when simulating the climate evolution. The past negative stratospheric ozone trends result in a negative climate forcing culminating at -0.15 W m-2 in the 1990s. In the meantime, the tropospheric ozone burden increase generates a positive climate forcing peaking at 0.41 W m-2. The future evolution of ozone strongly depends on the RCP scenario considered. In RCP4.5 and RCP6.0, the evolution of both stratospheric and tropospheric ozone generate relatively weak radiative forcing changes until 2060-2070 followed by a relative 30 % decrease in radiative forcing by 2100. In contrast, RCP8.5 and RCP2.6 model projections exhibit strongly different ozone radiative forcing trajectories. In the RCP2.6 scenario, both effects (stratospheric ozone, a negative forcing, and tropospheric ozone, a positive forcing) decline towards 1950s values while they both get stronger in the RCP8.5 scenario. Over the twentieth century, the evolution of the total aerosol burden is characterized by a strong increase after World War II until the middle of the 1980s followed by a stabilization during the last decade due to the strong decrease in sulfates in OECD countries since the 1970s. The cooling effects reach their maximal values in 1980, with -0.34 and -0.28 W m-2 respectively for direct and indirect total radiative forcings. According to the RCP scenarios, the aerosol content, after peaking around 2010, is projected to decline strongly and monotonically during the twenty-first century for the RCP8.5, 4.5 and 2.6 scenarios. While for RCP6.0 the decline occurs later, after peaking around 2050. As a consequence the relative importance of the total cooling effect of aerosols becomes weaker throughout the twenty-first century compared with the positive forcing of greenhouse gases. Nevertheless, both surface ozone and aerosol content show very different regional features depending on the future scenario considered. Hence, in 2050, surface ozone changes vary between -12 and +12 ppbv over Asia depending on the RCP projection, whereas the regional direct aerosol radiative forcing can locally exceed -3 W m-2.
H. Su, J. H. Jiang, C. Zhai, V. S. Perun, J. T. Shen, A. Del Genio, L. S. Nazarenko, L. J. Donner, L. Horowitz, C. Seman, C. Morcrette, J. Petch, M. Ringer, J. Cole, K. von Salzen, M. S. Mesquita, T. Iversen, J. E. Kristjansson, A. Gettelman, L. Rotstayn, S. Jeffrey, J.-L. Dufresne, M. Watanabe, H. Kawai, T. Koshiro, T. Wu, E. M. Volodin, T. L'Ecuyer, J. Teixeira, and G. L. Stephens. Diagnosis of regime-dependent cloud simulation errors in CMIP5 models using ”A-Train” satellite observations and reanalysis data. Journal of Geophysical Research (Atmospheres), 118:2762-2780, April 2013. [ bib | DOI | ADS link ]
The vertical distributions of cloud water content (CWC) and cloud fraction (CF) over the tropical oceans, produced by 13 coupled atmosphere-ocean models submitted to the Phase 5 of Coupled Model Intercomparison Project (CMIP5), are evaluated against CloudSat/CALIPSO observations as a function of large-scale parameters. Available CALIPSO simulator CF outputs are also examined. A diagnostic framework is developed to decompose the cloud simulation errors into large-scale errors, cloud parameterization errors and covariation errors. We find that the cloud parameterization errors contribute predominantly to the total errors for all models. The errors associated with large-scale temperature and moisture structures are relatively greater than those associated with large-scale midtropospheric vertical velocity and lower-level divergence. All models capture the separation of deep and shallow clouds in distinct large-scale regimes; however, the vertical structures of high/low clouds and their variations with large-scale parameters differ significantly from the observations. The CWCs associated with deep convective clouds simulated in most models do not reach as high in altitude as observed, and their magnitudes are generally weaker than CloudSat total CWC, which includes the contribution of precipitating condensates, but are close to CloudSat nonprecipitating CWC. All models reproduce maximum CF associated with convective detrainment, but CALIPSO simulator CFs generally agree better with CloudSat/CALIPSO combined retrieval than the model CFs, especially in the midtroposphere. Model simulated low clouds tend to have little variation with large-scale parameters except lower-troposphere stability, while the observed low cloud CWC, CF, and cloud top height vary consistently in all large-scale regimes.
J. Körper, I. Höschel, J. A. Lowe, C. D. Hewitt, D. Salas y Melia, E. Roeckner, H. Huebener, J.-F. Royer, J.-L. Dufresne, A. Pardaens, M. A. Giorgetta, M. G. Sanderson, O. H. Otterå, J. Tjiputra, and S. Denvil. The effects of aggressive mitigation on steric sea level rise and sea ice changes. Climate Dynamics, 40:531-550, February 2013. [ bib | DOI | ADS link ]
With an increasing political focus on limiting global warming to less than 2 degC above pre-industrial levels it is vital to understand the consequences of these targets on key parts of the climate system. Here, we focus on changes in sea level and sea ice, comparing twenty-first century projections with increased greenhouse gas concentrations (using the mid-range IPCC A1B emissions scenario) with those under a mitigation scenario with large reductions in emissions (the E1 scenario). At the end of the twenty-first century, the global mean steric sea level rise is reduced by about a third in the mitigation scenario compared with the A1B scenario. Changes in surface air temperature are found to be poorly correlated with steric sea level changes. While the projected decreases in sea ice extent during the first half of the twenty-first century are independent of the season or scenario, especially in the Arctic, the seasonal cycle of sea ice extent is amplified. By the end of the century the Arctic becomes sea ice free in September in the A1B scenario in most models. In the mitigation scenario the ice does not disappear in the majority of models, but is reduced by 42 % of the present September extent. Results for Antarctic sea ice changes reveal large initial biases in the models and a significant correlation between projected changes and the initial extent. This latter result highlights the necessity for further refinements in Antarctic sea ice modelling for more reliable projections of future sea ice.