Skip to content. | Skip to navigation

Personal tools

Sections
You are here: Home / Publications / Peer-reviewed papers / lmd_Picon1990_bib.html

lmd_Picon1990_bib.html

lmd_Picon1990.bib

@comment{{This file has been generated by bib2bib 1.95}}
@comment{{Command line: /usr/bin/bib2bib --quiet -c 'not journal:"Discussions"' -c 'not journal:"Polymer Science"' -c '  author:"Picon"  ' -c year=1990 -c $type="ARTICLE" -oc lmd_Picon1990.txt -ob lmd_Picon1990.bib /home/WWW/LMD/public/Publis_LMDEMC3.link.bib}}
@article{1990JCli....3..865P,
  author = {{Picon}, L. and {Desbois}, M.},
  title = {{Relation between METEOSAT Water Vapor Radiance Fields and Large Scale Tropical Circulation Features.}},
  journal = {Journal of Climate},
  year = 1990,
  month = aug,
  volume = 3,
  pages = {865-876},
  abstract = {{Mean monthly images from the water vapor channel of METEOSAT
characteristically contain large-scale spatial structures, especially in
tropical regions. The aim of this paper is to establish connections
between these structures and large-scale circulation features. For this
purpose, statistical relationships between radiances and some
meteorological parameters provided by ECMWF analyses are
studied.Temporal correlations are computed for two sizes of regions, in
order to compare temporal changes associated with both large-scale
circulations and smaller scale systems. The correlations obtained are
poor, suggesting that the chosen parameters are not well related at
short time scales.Temporal averages appear more suitable for these
comparisons. As expected, the mean relative humidity yields the best
correlation with the mean water vapor radiances. A (weaker) relationship
exists also with mean dynamic fields: large water vapor radiances are
almost always related to subsidence in the middle troposphere,
divergence near the surface, and convergence in the upper troposphere.
However, there is regional variability in the results., one explanation
may be different contributions from horizontal advecion and vertical
motions to the humidity of the middle troposphere.
}},
  doi = {10.1175/1520-0442(1990)003<0865:RBMWVR>2.0.CO;2},
  adsurl = {http://adsabs.harvard.edu/abs/1990JCli....3..865P},
  adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
Contact information

EMC3 group

LMD/CNRS/UPMC
Case 99
Tour 45-55, 3ème étage
4 Place Jussieu
75252 Paris Cedex 05
FRANCE
Tel: 33 + 1 44 27 27 99
      33 + 6 16 27 34 18 (Dr F. Cheruy)
Tel: 33 + 1 44 27 35 25 (Secretary)
Fax: 33 + 1 44 27 62 72
email: emc3 at lmd.jussieu.fr

Map of our location

Real time LMDZ simulations

Today's LMDZ meteogram for the SIRTA site

Intranet EMC3

Intranet EMC3