Skip to content. | Skip to navigation

Personal tools

You are here: Home / Publications / Peer-reviewed papers / lmd_LEGACY1993_bib.html



@comment{{This file has been generated by bib2bib 1.95}}
@comment{{Command line: /usr/bin/bib2bib --quiet -c 'not journal:"Discussions"' -c 'not journal:"Polymer Science"' -c year=1993 -c $type="ARTICLE" -oc lmd_LEGACY1993.txt -ob lmd_LEGACY1993.bib /home/WWW/LMD/public/}}
  author = {{Nesme-Ribes}, E. and {Ferreira}, E.~N. and {Sadourny}, R. and 
	{Le Treut}, H. and {Li}, Z.~X.},
  title = {{Solar dynamics and its impact on solar irradiance and the terrestrial climate}},
  journal = {\jgr},
  keywords = {Atmospheric General Circulation Models, Climate, Energy Transfer, Irradiance, Solar Activity, Solar Cycles, Solar Terrestrial Interactions, Astrodynamics, Climate Models, Gravitational Fields, Greenhouse Effect, Kinetic Energy, Magnetic Effects, Solar Flux, Stellar Luminosity, Thermal Energy},
  year = 1993,
  month = nov,
  volume = 98,
  pages = {18923},
  abstract = {{Among the various uncertainties present in climate modeling, the
variability of total solar irradiance is not one of the least. For lack
of any direct measure of the solar irradiance in the past, substitutes
are needed. However, the difficulties are twofold: (1) the reliability
of the proxies and (2) the need for some physical mechanism relating
these proxies to the solar luminosity. On the basis of a better
understanding of the solar machinery we can now propose a plausible
scenario connecting the exchanges of energy between the various
reservoirs: magnetic, thermal, gravitational, and kinetic. In the
present paper we discuss the available proxies and suggest a way to
reconstruct total solar irradiance over the past four centuries. The
response of the Laboratoire de Meteorologie Dynamique atmospheric
general circulation model to magnetoconvective solar forcing during the
Maunder minimum is discussed. The simulated cooling appears to be
compatible with temperature data from the Little Ice Age; in addition,
it is found that variations of globally homogeneous external forcing
parameters, like incoming solar flux or greenhouse gas loading, yield
climate responses with very similar geographical patterns.
  doi = {10.1029/93JA00305},
  adsurl = {},
  adsnote = {Provided by the SAO/NASA Astrophysics Data System}
  author = {{Sadourny}, R.},
  title = {{Book Review: Teleconnections linking worldwide climate anomalies. Scientific Basis and Societal Impact, Edited by M.H. Glantz, R.W. Katz and N. Nicholls, Cambridge University Press, 1991, hardcover: x + 535 pp., Price: {\pound}40,-/US \$54.50. ISBN 0-521-36475-2}},
  journal = {Atmospheric Research},
  year = 1993,
  volume = 29,
  pages = {271-272},
  doi = {10.1016/0169-8095(93)90008-C},
  adsurl = {},
  adsnote = {Provided by the SAO/NASA Astrophysics Data System}
Contact information

EMC3 group

Case 99
Tour 45-55, 3ème étage
4 Place Jussieu
75252 Paris Cedex 05
Tel: 33 + 1 44 27 27 99
      33 + 6 16 27 34 18 (Dr F. Cheruy)
Tel: 33 + 1 44 27 35 25 (Secretary)
Fax: 33 + 1 44 27 62 72
email: emc3 at

Map of our location

Real time LMDZ simulations

Today's LMDZ meteogram for the SIRTA site

Intranet EMC3

Intranet EMC3