lmd_Dufresne2007_abstracts.html
2007 .
(2 publications)P. Braconnot, F. Hourdin, S. Bony, J. L. Dufresne, J. Y. Grandpeix, and O. Marti. Impact of different convective cloud schemes on the simulation of the tropical seasonal cycle in a coupled ocean atmosphere model. Climate Dynamics, 29:501, October 2007. [ bib | DOI | ADS link ]
The simulation of the mean seasonal cycle of sea surface temperature (SST) remains a challenge for coupled ocean atmosphere general circulation models (OAGCMs). Here we investigate how the numerical representation of clouds and convection affects the simulation of the seasonal variations of tropical SST. For this purpose, we compare simulations performed with two versions of the same OAGCM differing only by their convection and cloud schemes. Most of the atmospheric temperature and precipitation differences between the two simulations reflect differences found in atmosphere-alone simulations. They affect the ocean interior down to 1,000 m. Substantial differences are found between the two coupled simulations in the seasonal march of the Intertropical Convergence Zone in the eastern part of the Pacific and Atlantic basins, where the equatorial upwelling develops. The results confirm that the distribution of atmospheric convection between ocean and land during the American and African boreal summer monsoons plays a key role in maintaining a cross equatorial flow and a strong windstress along the equator, and thereby the equatorial upwelling. Feedbacks between convection, large-scale circulation, SST and clouds are highlighted from the differences between the two simulations. In one case, these feedbacks maintain the ITCZ in a quite realistic position, whereas in the other case the ITCZ is located too far south close to the equator.
G. Krinner, O. Magand, I. Simmonds, C. Genthon, and J.-L. Dufresne. Simulated Antarctic precipitation and surface mass balance at the end of the twentieth and twenty-first centuries. Climate Dynamics, 28:215-230, February 2007. [ bib | DOI | ADS link ]
The aim of this work is to assess potential future Antarctic surface mass balance changes, the underlying mechanisms, and the impact of these changes on global sea level. To this end, this paper presents simulations of the Antarctic climate for the end of the twentieth and twenty-first centuries. The simulations were carried out with a stretched-grid atmospheric general circulation model, allowing for high horizontal resolution (60 km) over Antarctica. It is found that the simulated present-day surface mass balance is skilful on continental scales. Errors on regional scales are moderate when observed sea surface conditions are used; more significant regional biases appear when sea surface conditions from a coupled model run are prescribed. The simulated Antarctic surface mass balance increases by 32 mm water equivalent per year in the next century, corresponding to a sea level decrease of 1.2 mm year-1 by the end of the twenty-first century. This surface mass balance increase is largely due to precipitation changes, while changes in snow melt and turbulent latent surface fluxes are weak. The temperature increase leads to an increased moisture transport towards the interior of the continent because of the higher moisture holding capacity of warmer air, but changes in atmospheric dynamics, in particular off the Antarctic coast, regionally modulate this signal.