lmd_all2013_abstracts.html

2013 .

(67 publications)

I. Tobin, S. Bony, C. E. Holloway, J.-Y. Grandpeix, G. Sèze, D. Coppin, S. J. Woolnough, and R. Roca. Does convective aggregation need to be represented in cumulus parameterizations? Journal of Advances in Modeling Earth Systems, 5:692--703, December 2013. [ bib | DOI | ADS link ]

Tropical deep convection exhibits a variety of levels of aggregation over a wide range of scales. Based on a multisatellite analysis, the present study shows at mesoscale that different levels of aggregation are statistically associated with differing large-scale atmospheric states, despite similar convective intensity and large-scale forcings. The more aggregated the convection, the dryer and less cloudy the atmosphere, the stronger the outgoing longwave radiation, and the lower the planetary albedo. This suggests that mesoscale convective aggregation has the potential to affect couplings between moisture and convection and between convection, radiation, and large-scale ascent. In so doing, aggregation may play a role in phenomena such as ”hot spots” or the Madden-Julian Oscillation. These findings support the need for the representation of mesoscale organization in cumulus parameterizations; most parameterizations used in current climate models lack any such representation. The ability of a cloud system-resolving model to reproduce observed relationships suggests that such models may be useful to guide attempts at parameterizations of convective aggregation.

M. Zhang, C. S. Bretherton, P. N. Blossey, P. H. Austin, J. T. Bacmeister, S. Bony, F. Brient, S. K. Cheedela, A. Cheng, A. D. Genio, S. R. Roode, S. Endo, C. N. Franklin, J.-C. Golaz, C. Hannay, T. Heus, F. A. Isotta, J.-L. Dufresne, I.-S. Kang, H. Kawai, M. Köhler, V. E. Larson, Y. Liu, A. P. Lock, U. Lohmann, M. F. Khairoutdinov, A. M. Molod, R. A. J. Neggers, P. Rasch, I. Sandu, R. Senkbeil, A. P. Siebesma, C. Siegenthaler-Le Drian, B. Stevens, M. J. Suarez, K.-M. Xu, K. Salzen, M. J. Webb, A. Wolf, and M. Zhao. CGILS: Results from the first phase of an international project to understand the physical mechanisms of low cloud feedbacks in single column models. Journal of Advances in Modeling Earth Systems, 5:826--842, December 2013. [ bib | DOI | ADS link ]

CGILSthe CFMIP-GASS Intercomparison of Large Eddy Models (LESs) and single column models (SCMs)investigates the mechanisms of cloud feedback in SCMs and LESs under idealized climate change perturbation. This paper describes the CGILS results from 15 SCMs and 8 LES models. Three cloud regimes over the subtropical oceans are studied: shallow cumulus, cumulus under stratocumulus, and well-mixed coastal stratus/stratocumulus. In the stratocumulus and coastal stratus regimes, SCMs without activated shallow convection generally simulated negative cloud feedbacks, while models with active shallow convection generally simulated positive cloud feedbacks. In the shallow cumulus alone regime, this relationship is less clear, likely due to the changes in cloud depth, lateral mixing, and precipitation or a combination of them. The majority of LES models simulated negative cloud feedback in the well-mixed coastal stratus/stratocumulus regime, and positive feedback in the shallow cumulus and stratocumulus regime. A general framework is provided to interpret SCM results: in a warmer climate, the moistening rate of the cloudy layer associated with the surface-based turbulence parameterization is enhanced; together with weaker large-scale subsidence, it causes negative cloud feedback. In contrast, in the warmer climate, the drying rate associated with the shallow convection scheme is enhanced. This causes positive cloud feedback. These mechanisms are summarized as the ”NESTS” negative cloud feedback and the ”SCOPE” positive cloud feedback (Negative feedback from Surface Turbulence under weaker SubsidenceShallow Convection PositivE feedback) with the net cloud feedback depending on how the two opposing effects counteract each other. The LES results are consistent with these interpretations.

J. Vial, J.-L. Dufresne, and S. Bony. On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Climate Dynamics, 41:3339--3362, December 2013. [ bib | DOI | ADS link ]

This study diagnoses the climate sensitivity, radiative forcing and climate feedback estimates from eleven general circulation models participating in the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5), and analyzes inter-model differences. This is done by taking into account the fact that the climate response to increased carbon dioxide (CO2) is not necessarily only mediated by surface temperature changes, but can also result from fast land warming and tropospheric adjustments to the CO2 radiative forcing. By considering tropospheric adjustments to CO2 as part of the forcing rather than as feedbacks, and by using the radiative kernels approach, we decompose climate sensitivity estimates in terms of feedbacks and adjustments associated with water vapor, temperature lapse rate, surface albedo and clouds. Cloud adjustment to CO2 is, with one exception, generally positive, and is associated with a reduced strength of the cloud feedback; the multi-model mean cloud feedback is about 33 % weaker. Non-cloud adjustments associated with temperature, water vapor and albedo seem, however, to be better understood as responses to land surface warming. Separating out the tropospheric adjustments does not significantly affect the spread in climate sensitivity estimates, which primarily results from differing climate feedbacks. About 70 % of the spread stems from the cloud feedback, which remains the major source of inter-model spread in climate sensitivity, with a large contribution from the tropics. Differences in tropical cloud feedbacks between low-sensitivity and high-sensitivity models occur over a large range of dynamical regimes, but primarily arise from the regimes associated with a predominance of shallow cumulus and stratocumulus clouds. The combined water vapor plus lapse rate feedback also contributes to the spread of climate sensitivity estimates, with inter-model differences arising primarily from the relative humidity responses throughout the troposphere. Finally, this study points to a substantial role of nonlinearities in the calculation of adjustments and feedbacks for the interpretation of inter-model spread in climate sensitivity estimates. We show that in climate model simulations with large forcing (e.g., 4 × CO2), nonlinearities cannot be assumed minor nor neglected. Having said that, most results presented here are consistent with a number of previous feedback studies, despite the very different nature of the methodologies and all the uncertainties associated with them.

T. Yao, V. Masson-Delmotte, J. Gao, W. Yu, X. Yang, C. Risi, C. Sturm, M. Werner, H. Zhao, Y. He, W. Ren, L. Tian, C. Shi, and S. Hou. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations. Reviews of Geophysics, 51:525--548, December 2013. [ bib | DOI | ADS link ]

stable oxygen isotope ratio (δ18O) in precipitation is an integrated tracer of atmospheric processes worldwide. Since the 1990s, an intensive effort has been dedicated to studying precipitation isotopic composition at more than 20 stations in the Tibetan Plateau (TP) located at the convergence of air masses between the westerlies and Indian monsoon. In this paper, we establish a database of precipitation δ18O and use different models to evaluate the climatic controls of precipitation δ18O over the TP. The spatial and temporal patterns of precipitation δ18O and their relationships with temperature and precipitation reveal three distinct domains, respectively associated with the influence of the westerlies (northern TP), Indian monsoon (southern TP), and transition in between. Precipitation δ18O in the monsoon domain experiences an abrupt decrease in May and most depletion in August, attributable to the shifting moisture origin between Bay of Bengal (BOB) and southern Indian Ocean. High-resolution atmospheric models capture the spatial and temporal patterns of precipitation δ18O and their relationships with moisture transport from the westerlies and Indian monsoon. Only in the westerlies domain are atmospheric models able to represent the relationships between climate and precipitation δ18O. More significant temperature effect exists when either the westerlies or Indian monsoon is the sole dominant atmospheric process. The observed and simulated altitude-δ18O relationships strongly depend on the season and the domain (Indian monsoon or westerlies). Our results have crucial implications for the interpretation of paleoclimate records and for the application of atmospheric simulations to quantifying paleoclimate and paleo-elevation changes.

J. Peñuelas, B. Poulter, J. Sardans, P. Ciais, M. van der Velde, L. Bopp, O. Boucher, Y. Godderis, P. Hinsinger, J. Llusia, E. Nardin, S. Vicca, M. Obersteiner, and I. A. Janssens. Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Communications, 4:2934, December 2013. [ bib | DOI | ADS link ]

The availability of carbon from rising atmospheric carbon dioxide levels and of nitrogen from various human-induced inputs to ecosystems is continuously increasing; however, these increases are not paralleled by a similar increase in phosphorus inputs. The inexorable change in the stoichiometry of carbon and nitrogen relative to phosphorus has no equivalent in Earths history. Here we report the profound and yet uncertain consequences of the human imprint on the phosphorus cycle and nitrogen:phosphorus stoichiometry for the structure, functioning and diversity of terrestrial and aquatic organisms and ecosystems. A mass balance approach is used to show that limited phosphorus and nitrogen availability are likely to jointly reduce future carbon storage by natural ecosystems during this century. Further, if phosphorus fertilizers cannot be made increasingly accessible, the crop yields projections of the Millennium Ecosystem Assessment imply an increase of the nutrient deficit in developing regions.

A. Lahellec and J.-L. Dufresne. A Formal Analysis of the Feedback Concept in Climate Models. Part I: Exclusive and Inclusive Feedback Analyses. Journal of Atmospheric Sciences, 70:3940--3958, December 2013. [ bib | DOI | ADS link ]

Climate sensitivity and feedback are key concepts if the complex behavior of climate response to perturbation is to be interpreted in a simple way. They have also become an essential tool for comparing global circulation models and assessing the reason for the spread in their results. The authors introduce a formal basic model to analyze the practical methods used to infer climate feedbacks and sensitivity from GCMs. The tangent linear model is used first to critically review the standard methods of feedback analyses that have been used in the GCM community for 40 years now. This leads the authors to distinguish between exclusive feedback analyses as in the partial radiative perturbation approach and inclusive analyses as in the ”feedback suppression” methods. This review explains the hypotheses needed to apply these methods with confidence. Attention is paid to the more recent regression technique applied to the abrupt 2-CO2 experiment. A numerical evaluation of it is given, related to the Lyapunov analysis of the dynamical feature of the regression. It is applied to the Planck response, determined in its most strict definition within the GCM. In this approach, the Planck feedback becomes a dynamical feedback among others and, as such, also has a fast response differing from its steady-state profile.

J. Zhang, D. Li, L. Li, and W. Deng. Decadal variability of droughts and floods in the Yellow River basin during the last five centuries and relations with the North Atlantic SST. International Journal of Climatology, 33:3217--3228, December 2013. [ bib | DOI | ADS link ]

L. Tomassini, O. Geoffroy, J.-L. Dufresne, A. Idelkadi, C. Cagnazzo, K. Block, T. Mauritsen, M. Giorgetta, and J. Quaas. The respective roles of surface temperature driven feedbacks and tropospheric adjustment to CO2 in CMIP5 transient climate simulations. Climate Dynamics, 41:3103--3126, December 2013. [ bib | DOI | ADS link ]

An overview of radiative climate feedbacks and ocean heat uptake efficiency diagnosed from idealized transient climate change experiments of 14 CMIP5 models is presented. Feedbacks explain about two times more variance in transient climate response across the models than ocean heat uptake efficiency. Cloud feedbacks can clearly be identified as the main source of inter-model spread. Models with strong longwave feedbacks in the tropics feature substantial increases in cloud ice around the tropopause suggestive of changes in cloud-top heights. The lifting of the tropical tropopause goes together with a general weakening of the tropical circulation. Distinctive inter-model differences in cloud shortwave feedbacks occur in the subtropics including the equatorward flanks of the storm-tracks. Related cloud fraction changes are not confined to low clouds but comprise middle level clouds as well. A reduction in relative humidity through the lower and mid troposphere can be identified as being the main associated large-scale feature. Experiments with prescribed sea surface temperatures are analyzed in order to investigate whether the diagnosed feedbacks from the transient climate simulations contain a tropospheric adjustment component that is not conveyed through the surface temperature response. The strengths of the climate feedbacks computed from atmosphere-only experiments with prescribed increases in sea surface temperatures, but fixed CO2 concentrations, are close to the ones derived from the transient experiment. Only the cloud shortwave feedback exhibits discernible differences which, however, can not unequivocally be attributed to tropospheric adjustment to CO2. Although for some models a tropospheric adjustment component is present in the global mean shortwave cloud feedback, an analysis of spatial patterns does not lend support to the view that cloud feedbacks are dominated by their tropospheric adjustment part. Nevertheless, there is positive correlation between the strength of tropospheric adjustment processes and cloud feedbacks across different climate models.

J. Jouzel, G. Delaygue, A. Landais, V. Masson-Delmotte, C. Risi, and F. Vimeux. Water isotopes as tools to document oceanic sources of precipitation. Water Resources Research, 49:7469--7486, November 2013. [ bib | DOI | ADS link ]

The isotopic composition of precipitation, in deuterium, oxygen 18 and oxygen 17, depends on the climatic conditions prevailing in the oceanic regions where it originates, mainly the sea surface temperature and the relative humidity of air. This dependency applies to present-day precipitation but also to past records which are extracted, for example, from polar ice cores. In turn, coisotopic measurements of deuterium and oxygen 18 offer the possibility to retrieve information about the oceanic origin of modern precipitation as well as about past changes in sea surface temperature and relative humidity of air. This interpretation of isotopic measurements has largely relied on simple Rayleigh-type isotopic models and is complemented by Lagrangian back trajectory analysis of moisture sources. It is now complemented by isotopic General Circulation Models (IGCM) in which the origin of precipitation can be tagged. We shortly review published results documenting this link between the oceanic sources of precipitation and their isotopic composition. We then present experiments performed with two different IGCMs, the GISS model II and the LMDZ model. We focus our study on marine water vapor and its contribution to precipitation over Antarctica and over the Andean region of South America. We show how IGCM experiments allow us to relate climatic conditions prevailing in the oceanic source of precipitation to its isotopic composition. Such experiments support, at least qualitatively, the current interpretation of ice core isotopic data in terms of changes in sea surface temperature. Additionally, we discuss recent studies clearly showing the added value of oxygen 17 measurements.

K. Alterskjær, J. E. Kristjánsson, O. Boucher, H. Muri, U. Niemeier, H. Schmidt, M. Schulz, and C. Timmreck. Sea-salt injections into the low-latitude marine boundary layer: The transient response in three Earth system models. Journal of Geophysical Research (Atmospheres), 118:12195, November 2013. [ bib | DOI | ADS link ]

proposed mechanisms for counteracting global warming through solar radiation management is the deliberate injection of sea salt acting via marine cloud brightening and the direct effect of sea-salt aerosols. In this study, we show results from multidecadal simulations of such sea-salt climate engineering (SSCE) on top of the RCP4.5 emission scenario using three Earth system models. As in the proposed ”G3” experiment of the Geoengineering Model Intercomparison Project, SSCE is designed to keep the top-of-atmosphere radiative forcing at the 2020 level for 50 years. SSCE is then turned off and the models run for another 20 years, enabling an investigation of the abrupt warming associated with a termination of climate engineering (”termination effect”). As in former idealized studies, the climate engineering in all three models leads to a significant suppression of evaporation from low-latitude oceans and reduced precipitation over low-latitude oceans as well as in the storm-track regions. Unlike those studies, however, we find in all models enhanced evaporation, cloud formation, and precipitation over low-latitude land regions. This is a response to the localized cooling over the low-latitude oceans imposed by the SSCE design. As a result, the models obtain reduced aridity in many low-latitude land regions as well as in southern Europe. Terminating the SSCE leads to a rapid near-surface temperature increase, which, in the Arctic, exceeds 2 K in all three models within 20 years after SSCE has ceased. In the same period September Arctic sea ice cover shrinks by over 25%.

J. Zhang, L. Li, T. Zhou, and X. Xin. Evaluation of spring persistent rainfall over East Asia in CMIP3/CMIP5 AGCM simulations. Advances in Atmospheric Sciences, 30:1587--1600, November 2013. [ bib | DOI | ADS link ]

The progress made from Phase 3 to Phase 5 of the Coupled Model Intercomparison Project (CMIP3 to CMIP5) in simulating spring persistent rainfall (SPR) over East Asia was examined from the outputs of nine atmospheric general circulation models (AGCMs). The majority of the models overestimated the precipitation over the SPR domain, with the mean latitude of the SPR belt shifting to the north. The overestimation was about 1mm d-1 in the CMIP3 ensemble, and the northward displacement was about 3deg, while in the CMIP5 ensemble the overestimation was suppressed to 0.7 mm d-1 and the northward shift decreased to 2.5deg. The SPR features a northeast-southwest extended rain belt with a slope of 0.4degN/degE. The CMIP5 ensemble yielded a smaller slope (0.2degN/degE), whereas the CMIP3 ensemble featured an unrealistic zonally-distributed slope. The CMIP5 models also showed better skill in simulating the interannual variability of SPR. Previous studies have suggested that the zonal land-sea thermal contrast and sensible heat flux over the southeastern Tibetan Plateau are important for the existence of SPR. These two thermal factors were captured well in the CMIP5 ensemble, but underestimated in the CMIP3 ensemble. The variability of zonal land-sea thermal contrast is positively correlated with the rainfall amount over the main SPR center, but it was found that an overestimated thermal contrast between East Asia and South China Sea is a common problem in most of the CMIP3 and CMIP5 models. Simulation of the meridional thermal contrast is therefore important for the future improvement of current AGCMs.

A. Campoy, A. Ducharne, F. Cheruy, F. Hourdin, J. Polcher, and J. C. Dupont. Response of land surface fluxes and precipitation to different soil bottom hydrological conditions in a general circulation model. Journal of Geophysical Research (Atmospheres), 118:10725, October 2013. [ bib | DOI | ADS link ]

Very different approaches exist in land surface models (LSMs) to describe the water fluxes at the soil bottom, from free drainage to zero flux, and even upward fluxes if the soil is coupled to a water table. To explore the influence of these conditions on the water cycle in a unified framework, we introduce new boundary conditions in the ORCHIDEE LSM, which is coupled to the atmospheric general circulation model LMDZ. We use a zoomed and nudged configuration centered over France to reproduce the observed regional weather. Soil moisture and evapotranspiration increase ranging from free drainage to impermeable bottom, then by prescribing saturation closer and closer to the surface. The corresponding response patterns can be related to both climate regimes and soil texture. When confronted to observations from the SIRTA observatory 25 km south of Paris, which exhibits a shallow water table, the best simulations are the ones with prescribed saturation. The local precipitation, however, is only increased if the new bottom boundary conditions are applied globally. The magnitude of this increase depends on the evaporation and on the relative weight of local versus remote sources of moisture for precipitation between Western and Eastern Europe. This suggests that the summer warm/dry bias of many climate models in this region might be alleviated by including a sufficiently realistic ground water description.

S. I. Seneviratne, M. Wilhelm, T. Stanelle, B. Hurk, S. Hagemann, A. Berg, F. Cheruy, M. E. Higgins, A. Meier, V. Brovkin, M. Claussen, A. Ducharne, J.-L. Dufresne, K. L. Findell, J. Ghattas, D. M. Lawrence, S. Malyshev, M. Rummukainen, and B. Smith. Impact of soil moisture-climate feedbacks on CMIP5 projections: First results from the GLACE-CMIP5 experiment. Geophysical Research Letters, 40:5212--5217, October 2013. [ bib | DOI | ADS link ]

Global Land-Atmosphere Climate Experiment-Coupled Model Intercomparison Project phase 5 (GLACE-CMIP5) is a multimodel experiment investigating the impact of soil moisture-climate feedbacks in CMIP5 projections. We present here first GLACE-CMIP5 results based on five Earth System Models, focusing on impacts of projected changes in regional soil moisture dryness (mostly increases) on late 21st century climate. Projected soil moisture changes substantially impact climate in several regions in both boreal and austral summer. Strong and consistent effects are found on temperature, especially for extremes (about 1-1.5 K for mean temperature and 2-2.5 K for extreme daytime temperature). In the Northern Hemisphere, effects on mean and heavy precipitation are also found in most models, but the results are less consistent than for temperature. A direct scaling between soil moisture-induced changes in evaporative cooling and resulting changes in temperature mean and extremes is found in the simulations. In the Mediterranean region, the projected soil moisture changes affect about 25% of the projected changes in extreme temperature.

J. Gao, V. Masson-Delmotte, C. Risi, Y. He, and T. Yao. What controls precipitation Î18O in the southern Tibetan Plateau at seasonal and intra-seasonal scales? A case study at Lhasa and Nyalam. Tellus Series B Chemical and Physical Meteorology B, 54:21043, October 2013. [ bib | DOI | ADS link ]

Understanding the spatial and temporal controls of precipitation δ18O in the southern Tibetan Plateau of central Asia is necessary for paleoclimate reconstructions from the wealth of regional archives (ice cores, lake sediments, tree ring cellulose, and speleothems). While classical interpretations of such records were conducted in terms of local precipitation, simulations conducted with atmospheric general circulation models enabled with water stable isotopes have suggested that past changes in south Asia precipitation δ18O may be driven by remote processes linked to moisture transport. Studies conducted at the event scale can provide constraints to assess the drivers of precipitation δ18O and the validity of simulated mechanisms. Here, we take advantage of new event precipitation δ18O monitored from January 2005 to December 2007 at two southern Tibetan Plateau stations (Lhasa and Nyalam). The drivers of daily to seasonal variations are investigated using statistical relationships with local and regional temperature, precipitation amount and convective activity based on in situ data and satellite products. The strongest control on precipitation δ18O at Lhasa during the monsoon season at event and seasonal scales is provided by the integrated regional convective activity upstream air mass trajectories, cumulated over several days. In contrast, the integrated convection appears to be the main driver of precipitation δ18O at Nyalam only in July and August, and the situation is more complex in other months. Local climate variables can only account for a small fraction of the observed δ18O variance, with significant differences between both stations. This study offers a better constraint on climate archives interpretation in the southern Tibetan Plateau. The daily data presented here also provides a benchmark to evaluate the capacity of isotopically enabled atmospheric general circulation models (iGCMs) to simulate the response of precip!

itation δ18O to convection. This is illustrated using a nudged and zo omed simulation with the LMDZiso model. While it successfully simulates some seasonal and daily characteristics of precipitation δ18O in the southern Tibetan Plateau, it fails to simulate the correlation between δ18O and upstream precipitation. This calls for caution when using atmospheric models to interpret precipitation δ18O archives in terms of past monsoon variability.

B. Kravitz, P. M. Forster, A. Jones, A. Robock, K. Alterskjær, O. Boucher, A. K. L. Jenkins, H. Korhonen, J. E. Kristjánsson, H. Muri, U. Niemeier, A.-I. Partanen, P. J. Rasch, H. Wang, and S. Watanabe. Sea spray geoengineering experiments in the geoengineering model intercomparison project (GeoMIP): Experimental design and preliminary results. Journal of Geophysical Research (Atmospheres), 118:11175, October 2013. [ bib | DOI | ADS link ]

cloud brightening through sea spray injection has been proposed as a method of temporarily alleviating some of the impacts of anthropogenic climate change, as part of a set of technologies called geoengineering. We outline here a proposal for three coordinated climate modeling experiments to test aspects of sea spray geoengineering, to be conducted under the auspices of the Geoengineering Model Intercomparison Project (GeoMIP). The first, highly idealized, experiment (G1ocean-albedo) involves a uniform increase in ocean albedo to offset an instantaneous quadrupling of CO2 concentrations from preindustrial levels. Results from a single climate model show an increased land-sea temperature contrast, Arctic warming, and large shifts in annual mean precipitation patterns. The second experiment (G4cdnc) involves increasing cloud droplet number concentration in all low-level marine clouds to offset some of the radiative forcing of an RCP4.5 scenario. This experiment will test the robustness of models in simulating geographically heterogeneous radiative flux changes and their effects on climate. The third experiment (G4sea-salt) involves injection of sea spray aerosols into the marine boundary layer between 30degS and 30degN to offset 2 W m-2 of the effective radiative forcing of an RCP4.5 scenario. A single model study shows that the induced effective radiative forcing is largely confined to the latitudes in which injection occurs. In this single model simulation, the forcing due to aerosol-radiation interactions is stronger than the forcing due to aerosol-cloud interactions.

S. Tilmes, J. Fasullo, J.-F. Lamarque, D. R. Marsh, M. Mills, K. Alterskjær, H. Muri, J. E. Kristjánsson, O. Boucher, M. Schulz, J. N. S. Cole, C. L. Curry, A. Jones, J. Haywood, P. J. Irvine, D. Ji, J. C. Moore, D. B. Karam, B. Kravitz, P. J. Rasch, B. Singh, J.-H. Yoon, U. Niemeier, H. Schmidt, A. Robock, S. Yang, and S. Watanabe. The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP). Journal of Geophysical Research (Atmospheres), 118:11036, October 2013. [ bib | DOI | ADS link ]

The hydrological impact of enhancing Earth's albedo by solar radiation management is investigated using simulations from 12 Earth System models contributing to the Geoengineering Model Intercomparison Project (GeoMIP). We contrast an idealized experiment, G1, where the global mean radiative forcing is kept at preindustrial conditions by reducing insolation while the CO2 concentration is quadrupled to a 4×CO2 experiment. The reduction of evapotranspiration over land with instantaneously increasing CO2 concentrations in both experiments largely contributes to an initial reduction in evaporation. A warming surface associated with the transient adjustment in 4×CO2 generates an increase of global precipitation by around 6.9% with large zonal and regional changes in both directions, including a precipitation increase of 10% over Asia and a reduction of 7% for the North American summer monsoon. Reduced global evaporation persists in G1 with temperatures close to preindustrial conditions. Global precipitation is reduced by around 4.5%, and significant reductions occur over monsoonal land regions: East Asia (6%), South Africa (5%), North America (7%), and South America (6%). The general precipitation performance in models is discussed in comparison to observations. In contrast to the 4×CO2 experiment, where the frequency of months with heavy precipitation intensity is increased by over 50% in comparison to the control, a reduction of up to 20% is simulated in G1. These changes in precipitation in both total amount and frequency of extremes point to a considerable weakening of the hydrological cycle in a geoengineered world.

B. Charnay, F. Forget, R. Wordsworth, J. Leconte, E. Millour, F. Codron, and A. Spiga. Exploring the faint young Sun problem and the possible climates of the Archean Earth with a 3-D GCM. Journal of Geophysical Research (Atmospheres), 118:10414, September 2013. [ bib | DOI | arXiv | ADS link ]

Different solutions have been proposed to solve the ”faint young Sun problem,” defined by the fact that the Earth was not fully frozen during the Archean despite the fainter Sun. Most previous studies were performed with simple 1-D radiative convective models and did not account well for the clouds and ice-albedo feedback or the atmospheric and oceanic transport of energy. We apply a global climate model (GCM) to test the different solutions to the faint young Sun problem. We explore the effect of greenhouse gases (CO2 and CH4), atmospheric pressure, cloud droplet size, land distribution, and Earth's rotation rate. We show that neglecting organic haze, 100 mbar of CO2 with 2 mbar of CH4 at 3.8 Ga and 10 mbar of CO2 with 2 mbar of CH4 at 2.5 Ga allow a temperate climate (mean surface temperature between 10degC and 20degC). Such amounts of greenhouse gases remain consistent with the geological data. Removing continents produces a warming lower than +4degC. The effect of rotation rate is even more limited. Larger droplets (radii of 17 μm versus 12 μm) and a doubling of the atmospheric pressure produce a similar warming of around +7degC. In our model, ice-free water belts can be maintained up to 25degN/S with less than 1 mbar of CO2 and no methane. An interesting cloud feedback appears above cold oceans, stopping the glaciation. Such a resistance against full glaciation tends to strongly mitigate the faint young Sun problem.

A. Jones, J. M. Haywood, K. Alterskjær, O. Boucher, J. N. S. Cole, C. L. Curry, P. J. Irvine, D. Ji, B. Kravitz, J. Egill-Kristjánsson, J. C. Moore, U. Niemeier, A. Robock, H. Schmidt, B. Singh, S. Tilmes, S. Watanabe, and J.-H. Yoon. The impact of abrupt suspension of solar radiation management (termination effect) in experiment G2 of the Geoengineering Model Intercomparison Project (GeoMIP). Journal of Geophysical Research (Atmospheres), 118:9743--9752, September 2013. [ bib | DOI | ADS link ]

We have examined changes in climate which result from the sudden termination of geoengineering after 50 years of offsetting a 1% per annum increase in CO2 concentrations by a reduction of solar radiation, as simulated by 11 different climate models in experiment G2 of the Geoengineering Model Intercomparison Project. The models agree on a rapid increase in global-mean temperature following termination accompanied by increases in global-mean precipitation rate and decreases in sea-ice cover. There is no agreement on the impact of geoengineering termination on the rate of change of global-mean plant net primary productivity. There is a considerable degree of consensus for the geographical distribution of temperature change following termination, with faster warming at high latitudes and over land. There is also considerable agreement regarding the distribution of reductions in Arctic sea-ice, but less so for the Antarctic. There is much less agreement regarding the patterns of change in precipitation and net primary productivity, with a greater degree of consensus at higher latitudes.

C. Risi, A. Landais, R. Winkler, and F. Vimeux. Can we determine what controls the spatio-temporal distribution of d-excess and 17O-excess in precipitation using the LMDZ general circulation model? Climate of the Past, 9:2173--2193, September 2013. [ bib | DOI | ADS link ]

Combined measurements of the H218O and HDO isotopic ratios in precipitation, leading to second-order parameter D-excess, have provided additional constraints on past climates compared to the H218O isotopic ratio alone. More recently, measurements of H217O have led to another second-order parameter: 17O-excess. Recent studies suggest that 17O-excess in polar ice may provide information on evaporative conditions at the moisture source. However, the processes controlling the spatio-temporal distribution of 17O-excess are still far from being fully understood. We use the isotopic general circulation model (GCM) LMDZ to better understand what controls d-excess and 17O-excess in precipitation at present-day (PD) and during the last glacial maximum (LGM). The simulation of D-excess and 17O-excess is evaluated against measurements in meteoric water, water vapor and polar ice cores. A set of sensitivity tests and diagnostics are used to quantify the relative effects of evaporative conditions (sea surface temperature and relative humidity), Rayleigh distillation, mixing between vapors from different origins, precipitation re-evaporation and supersaturation during condensation at low temperature. In LMDZ, simulations suggest that in the tropics convective processes and rain re-evaporation are important controls on precipitation D-excess and 17O-excess. In higher latitudes, the effect of distillation, mixing between vapors from different origins and supersaturation are the most important controls. For example, the lower d-excess and 17O-excess at LGM simulated at LGM are mainly due to the supersaturation effect. The effect of supersaturation is however very sensitive to a parameter whose tuning would require more measurements and laboratory experiments. Evaporative conditions had previously been suggested to be key controlling factors of d-excess and 17O-excess, but LMDZ underestimates their role. More generally, some shortcomings in the simulation of 17O-excess by LMDZ suggest that general circulation models are not yet the perfect tool to quantify with confidence all processes controlling 17O-excess.

R. Vautard, T. Noël, L. Li, M. Vrac, E. Martin, P. Dandin, J. Cattiaux, and S. Joussaume. Climate variability and trends in downscaled high-resolution simulations and projections over Metropolitan France. Climate Dynamics, 41:1419--1437, September 2013. [ bib | DOI | ADS link ]

In order to fulfill the society demand for climate information at the spatial scale allowing impact studies, long-term high-resolution climate simulations are produced, over an area covering metropolitan France. One of the major goals of this article is to investigate whether such simulations appropriately simulate the spatial and temporal variability of the current climate, using two simulation chains. These start from the global IPSL-CM4 climate model, using two regional models (LMDz and MM5) at moderate resolution (15-20 km), followed with a statistical downscaling method in order to reach a target resolution of 8 km. The statistical downscaling technique includes a non-parametric method that corrects the distribution by using high-resolution analyses over France. First the uncorrected simulations are evaluated against a set of high-resolution analyses, with a focus on temperature and precipitation. Uncorrected downscaled temperatures suffer from a cold bias that is present in the global model as well. Precipitations biases have a season- and model-dependent behavior. Dynamical models overestimate rainfall but with different patterns and amplitude, but both have underestimations in the South-Eastern area (Cevennes mountains) in winter. A variance decomposition shows that uncorrected simulations fairly well capture observed variances from inter-annual to high-frequency intra-seasonal time scales. After correction, distributions match with analyses by construction, but it is shown that spatial coherence, persistence properties of warm, cold and dry episodes also match to a certain extent. Another aim of the article is to describe the changes for future climate obtained using these simulations under Scenario A1B. Results are presented on the changes between current and mid-term future (2021-2050) averages and variability over France. Interestingly, even though the same global climate model is used at the boundaries, regional climate change responses from the two models significantly differ.

B. Kravitz, K. Caldeira, O. Boucher, A. Robock, P. J. Rasch, K. AlterskjæR, D. B. Karam, J. N. S. Cole, C. L. Curry, J. M. Haywood, P. J. Irvine, D. Ji, A. Jones, J. E. KristjáNsson, D. J. Lunt, J. C. Moore, U. Niemeier, H. Schmidt, M. Schulz, B. Singh, S. Tilmes, S. Watanabe, S. Yang, and J.-H. Yoon. Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP). Journal of Geophysical Research (Atmospheres), 118:8320--8332, August 2013. [ bib | DOI | ADS link ]

geoengineeringdeliberate reduction in the amount of solar radiation retained by the Earthhas been proposed as a means of counteracting some of the climatic effects of anthropogenic greenhouse gas emissions. We present results from Experiment G1 of the Geoengineering Model Intercomparison Project, in which 12 climate models have simulated the climate response to an abrupt quadrupling of CO2 from preindustrial concentrations brought into radiative balance via a globally uniform reduction in insolation. Models show this reduction largely offsets global mean surface temperature increases due to quadrupled CO2 concentrations and prevents 97% of the Arctic sea ice loss that would otherwise occur under high CO2 levels but, compared to the preindustrial climate, leaves the tropics cooler (-0.3 K) and the poles warmer (+0.8 K). Annual mean precipitation minus evaporation anomalies for G1 are less than 0.2 mm day-1 in magnitude over 92% of the globe, but some tropical regions receive less precipitation, in part due to increased moist static stability and suppression of convection. Global average net primary productivity increases by 120% in G1 over simulated preindustrial levels, primarily from CO2 fertilization, but also in part due to reduced plant heat stress compared to a high CO2 world with no geoengineering. All models show that uniform solar geoengineering in G1 cannot simultaneously return regional and global temperature and hydrologic cycle intensity to preindustrial levels.

K. E. Scanlon, J. W. Head, J.-B. Madeleine, R. D. Wordsworth, and F. Forget. Orographic precipitation in valley network headwaters: Constraints on the ancient Martian atmosphere. Geophysical Research Letters, 40:4182--4187, August 2013. [ bib | DOI | ADS link ]

We examine the Martian valley networks in the framework of topographic influences on precipitation. We use an analytical model and the Laboratoire de Météorologie Dynamique (LMD) early Mars global circulation model (GCM) to explore the local-scale distribution of orographically forced precipitation as a function of atmospheric pressure. In simulations with 500 mbar and 1 bar CO2 atmospheres, orographic lifting results in enhanced snowfall upslope of the observed valley network tributaries. Our framework also suggests that a 2 bar atmosphere cannot create the observed valley pattern at the highest-relief valley network, Warrego Valles. As in previous work, the GCM does not generate temperatures warm enough for rain or significant snowmelt in the highlands with CO2 greenhouse warming alone. Thus while transient periods of unusual warming are still required to melt the deposits and carve the valleys, our model predicts snow deposition in the correct locations.

X. Jin, T. Wu, and L. Li. The quasi-stationary feature of nocturnal precipitation in the Sichuan Basin and the role of the Tibetan Plateau. Climate Dynamics, 41:977--994, August 2013. [ bib | DOI | ADS link ]

The nocturnal precipitation in the Sichuan Basin in summer has been studied in many previous works. This paper expands the study on the diurnal cycle of precipitation in the Sichuan Basin to the whole year. Results show that the nocturnal precipitation has a specific quasi-stationary feature in the basin. It occurs not only in summer but also in other three seasons, even more remarkable in spring and autumn than in summer. There is a prominent eastward timing delay in the nocturnal precipitation, that is, the diurnal peak of precipitation occurs at early-night in the western basin whereas at late-night in the center and east of the basin. The Tibetan Plateau plays an essential role in the formation of this quasi-stationary nocturnal precipitation. The early-night peak of precipitation in the western basin is largely due to strong ascending over the plateau and its eastern lee side. In the central and eastern basin, three coexisting factors contribute to the late-night peak of precipitation. One is the lower-tropospheric southwesterly flow around the southeastern edge of the Tibetan Plateau, which creates a strong cyclonic rotation and ascendance in the basin at late-night, as well as brings abundant water vapor. The second is the descending motion downslope along the eastern lee side of the plateau, together with an air mass accumulation caused by the warmer air mass transport from the southeast of the Yunnan-Guizhou Plateau, creating a diabatic warming at low level of the troposphere in the central basin. The third is a cold advection from the plateau to the basin at late-night, which leads to a cooling in the middle troposphere over the central basin. All these factors are responsible for precipitation to occur at late-night in the central to eastern basin.

B. L'Hévéder, L. Li, F. Sevault, and S. Somot. Interannual variability of deep convection in the Northwestern Mediterranean simulated with a coupled AORCM. Climate Dynamics, 41:937--960, August 2013. [ bib | DOI | ADS link ]

A hindcast experiment of the Mediterranean present-day climate is performed using a fully-coupled Atmosphere-Ocean Regional Climate Model (AORCM) for the Mediterranean basin. The new model, called LMDz-NEMO-Med, is composed of LMDz4-regional as atmospheric component and of NEMOMED8 as oceanic component. This AORCM equilibrates freely, without any flux adjustment, neither in fresh water nor in heat. At its atmospheric lateral boundary conditions, it is driven by ERA-40 data from 1958 to 2001, after a spin-up of 40 years in coupled configuration. The model performance is assessed and compared with available observational datasets. The model skill in reproducing mean state and inter-annual variability of main atmospheric and oceanic surface fields is in line with that of state-of-the-art AORCMs. Considering the ocean behaviour, the inter-annual variations of the basin-scale heat content are in very good agreement with the observations. The model results concerning salt content could not be adequately validated. High inter-annual variability of deep convection in the Gulf of Lion is simulated, with 53 % of convective winters, representative of the present climate state. The role of different factors influencing the deep convection and its inter-annual variability is examined, including dynamic and hydrostatic ocean preconditioning and atmospheric surface forcing. A conceptual framework is outlined and validated in linking the occurrence of deep convection to the efficiency of the integrated surface buoyancy fluxes along the winter season to mix the initially stratified averaged water column down to the convective threshold depth. This simple framework (based only on 2 independent variables) is able to explain 60 % (resp. 69 %) of inter-annual variability of the deep water formation rate (resp. maximum mixed layer depth) for the West Mediterranean Deep Water (WMDW) formation process.

M. Rojas, L. Z. Li, M. Kanakidou, N. Hatzianastassiou, G. Seze, and H. Le Treut. Winter weather regimes over the Mediterranean region: their role for the regional climate and projected changes in the twenty-first century. Climate Dynamics, 41:551--571, August 2013. [ bib | DOI | ADS link ]

The winter time weather variability over the Mediterranean is studied in relation to the prevailing weather regimes (WRs) over the region. Using daily geopotential heights at 700 hPa from the ECMWF ERA40 Reanalysis Project and Cluster Analysis, four WRs are identified, in increasing order of frequency of occurrence, as cyclonic (22.0 %), zonal (24.8 %), meridional (25.2 %) and anticyclonic (28.0 %). The surface climate, cloud distribution and radiation patterns associated with these winter WRs are deduced from satellite (ISCCP) and other observational (E-OBS, ERA40) datasets. The LMDz atmosphere-ocean regional climate model is able to simulate successfully the same four Mediterranean weather regimes and reproduce the associated surface and atmospheric conditions for the present climate (1961-1990). Both observational- and LMDz-based computations show that the four Mediterranean weather regimes control the region's weather and climate conditions during winter, exhibiting significant differences between them as for temperature, precipitation, cloudiness and radiation distributions within the region. Projections (2021-2050) of the winter Mediterranean weather and climate are obtained using the LMDz model and analysed in relation to the simulated changes in the four WRs. According to the SRES A1B emission scenario, a significant warming (between 2 and 4 degC) is projected to occur in the region, along with a precipitation decrease by 10-20 % in southern Europe, Mediterranean Sea and North Africa, against a 10 % precipitation increase in northern European areas. The projected changes in temperature and precipitation in the Mediterranean are explained by the model-predicted changes in the frequency of occurrence as well as in the intra-seasonal variability of the regional weather regimes. The anticyclonic configuration is projected to become more recurrent, contributing to the decreased precipitation over most of the basin, while the cyclonic and zonal ones become more sporadic, resulting in more days with below normal precipitation over most of the basin, and on the eastern part of the region, respectively. The changes in frequency and intra-seasonal variability highlights the usefulness of dynamics versus statistical downscaling techniques for climate change studies.

S. Rossignol, C. Rio, A. Ustache, S. Fable, J. Nicolle, A. Même, B. D'Anna, M. Nicolas, E. Leoz, and L. Chiappini. The use of a housecleaning product in an indoor environment leading to oxygenated polar compounds and SOA formation: Gas and particulate phase chemical characterization. Atmospheric Environment, 75:196--205, August 2013. [ bib | DOI | ADS link ]

This work investigates Secondary Organic Aerosol (SOA) formed by limonene ozonolysis using a housecleaning product in indoor environment. This study combines simulation chamber ozonolysis experiments and field studies in an experimental house allowing different scenarios of housecleaning product use in real conditions.

Chemical speciation has been performed using a new method based on simultaneous sampling of both gas and particulate phases on sorbent tubes and filters. This method allowed the identification and quantification of about 35 products in the gas and particulate phases. Among them, products known to be specific from limonene ozonolysis such as limononaldehyde, ketolimonene and ketolimonic acid have been detected. Some other compounds such as 2-methylbutanoic acid had never been detected in previous limonene ozonolysis studies. Some compounds like levulinic acid had already been detected but their formation remained unexplained. Potential reaction pathways are proposed in this study for these compounds. For each experiment, chemical data are coupled together with physical characterization of formed particles: mass and size and number distribution evolution which allowed the observation of new particles formation (about 87,000particlecm-3). The chemical speciation associated to aerosol size distribution results confirmed that limonene emitted by the housecleaning product was responsible for SOA formation. To our knowledge, this work provides the most comprehensive analytical study of detected compounds in a single experiment for limonene ozonolysis in both gaseous and particulate phases in real indoor environment.

A. Colaïtis, A. Spiga, F. Hourdin, C. Rio, F. Forget, and E. Millour. A thermal plume model for the Martian convective boundary layer. Journal of Geophysical Research (Planets), 118:1468--1487, July 2013. [ bib | DOI | arXiv | ADS link ]

The Martian planetary boundary layer (PBL) is a crucial component of the Martian climate system. Global climate models (GCMs) and mesoscale models (MMs) lack the resolution to predict PBL mixing which is therefore parameterized. Here we propose to adapt the ”thermal plume” model, recently developed for Earth climate modeling, to Martian GCMs, MMs, and single-column models. The aim of this physically based parameterization is to represent the effect of organized turbulent structures (updrafts and downdrafts) on the daytime PBL transport, as it is resolved in large-eddy simulations (LESs). We find that the terrestrial thermal plume model needs to be modified to satisfyingly account for deep turbulent plumes found in the Martian convective PBL. Our Martian thermal plume model qualitatively and quantitatively reproduces the thermal structure of the daytime PBL on Mars: superadiabatic near-surface layer, mixing layer, and overshoot region at PBL top. This model is coupled to surface layer parameterizations taking into account stability and turbulent gustiness to calculate surface-atmosphere fluxes. Those new parameterizations for the surface and mixed layers are validated against near-surface lander measurements. Using a thermal plume model moreover enables a first-order estimation of key turbulent quantities (e.g., PBL height and convective plume velocity) in Martian GCMs and MMs without having to run costly LESs.

T. P Sabin, R. Krishnan, J. Ghattas, S. Denvil, J.-L. Dufresne, F. Hourdin, and T. Pascal. High resolution simulation of the South Asian monsoon using a variable resolution global climate model. Climate Dynamics, 41:173--194, July 2013. [ bib | DOI | ADS link ]

This study examines the feasibility of using a variable resolution global general circulation model (GCM), with telescopic zooming and enhanced resolution (˜35 km) over South Asia, to better understand regional aspects of the South Asian monsoon rainfall distribution and the interactions between monsoon circulation and precipitation. For this purpose, two sets of ten member realizations are produced with and without zooming using the LMDZ (Laboratoire Meteorologie Dynamique and Z stands for zoom) GCM. The simulations without zoom correspond to a uniform 1deg × 1deg grid with the same total number of grid points as in the zoom version. So the grid of the zoomed simulations is finer inside the region of interest but coarser outside. The use of these finer and coarser resolution ensemble members allows us to examine the impact of resolution on the overall quality of the simulated regional monsoon fields. It is found that the monsoon simulation with high-resolution zooming greatly improves the representation of the southwesterly monsoon flow and the heavy precipitation along the narrow orography of the Western Ghats, the northeastern mountain slopes and northern Bay of Bengal (BOB). A realistic Monsoon Trough (MT) is also noticed in the zoomed simulation, together with remarkable improvements in representing the associated precipitation and circulation features, as well as the large-scale organization of meso-scale convective systems over the MT region. Additionally, a more reasonable simulation of the monsoon synoptic disturbances (lows and disturbances) along the MT is noted in the high-resolution zoomed simulation. On the other hand, the no-zoom version has limitations in capturing the depressions and their movement, so that the MT zone is relatively dry in this case. Overall, the results from this work demonstrate the usefulness of the high-resolution variable resolution LMDZ model in realistically capturing the interactions among the monsoon large-scale dynamics, the synoptic systems and the meso-scale convective systems, which are essential elements of the South Asian monsoon system.

C. Risi, D. Noone, C. Frankenberg, and J. Worden. Role of continental recycling in intraseasonal variations of continental moisture as deduced from model simulations and water vapor isotopic measurements. Water Resources Research, 49:4136--4156, July 2013. [ bib | DOI | ADS link ]

Climate models suggest an important role for land-atmosphere feedbacks on climate, but exhibit a large dispersion in the simulation of this role. We focus here on the role of continental recycling in the intraseasonal variability of continental moisture, and we explore the possibility of using water isotopic measurements to observationally constrain this role. Based on water tagging, we design a diagnostic, named D1, to estimate the role of continental recycling on the intraseasonal variability of continental moisture simulated by the general circulation model LMDZ. In coastal regions, the intraseasonal variability of continental moisture is mainly driven by the variability in oceanic moisture convergence. More inland, the role of continental recycling becomes important. The simulation of this role is sensitive to model parameters modulating evapotranspiration. Then we show that δD in the low-level water vapor is a good tracer for continental recycling, due to the enriched signature of transpiration. Over tropical land regions, the intraseasonal relationship between δD and precipitable water, named D1_iso, is a good observational proxy for D1. We test the possibility of using D1_iso for model evaluation using two satellite data sets: GOSAT and TES. LMDZ captures well the spatial patterns of D1_iso, but underestimates its values. However, a more accurate description of how atmospheric processes affect the isotopic composition of water vapor is necessary before concluding with certitude that LMDZ underestimates the role of continental recycling.

N. Huneeus, O. Boucher, and F. Chevallier. Atmospheric inversion of SO2 and primary aerosol emissions for the year 2010. Atmospheric Chemistry & Physics, 13:6555--6573, July 2013. [ bib | DOI | ADS link ]

Natural and anthropogenic emissions of primary aerosols and sulphur dioxide (SO2) are estimated for the year 2010 by assimilating daily total and fine mode aerosol optical depth (AOD) at 550 nm from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument into a global aerosol model of intermediate complexity. The system adjusts monthly emission fluxes over a set of predefined regions tiling the globe. The resulting aerosol emissions improve the model performance, as measured from usual skill scores, both against the assimilated observations and a set of independent ground-based measurements. The estimated emission fluxes are 67 Tg S yr-1 for SO2, 12 Tg yr-1 for black carbon (BC), 87 Tg yr-1 for particulate organic matter (POM), 17 000 Tg yr-1 for sea salt (SS, estimated at 80 % relative humidity) and 1206 Tg yr-1 for desert dust (DD). They represent a difference of +53, +73, +72, +1 and -8%, respectively, with respect to the first guess (FG) values. Constant errors throughout the regions and the year were assigned to the a priori emissions. The analysis errors are reduced with respect to the a priori ones for all species and throughout the year, they vary between 3 and 18% for SO2, 1 and 130% for biomass burning, 21 and 90 % for fossil fuel, 1 and 200% for DD and 1 and 5% for SS. The maximum errors on the global-yearly scale for the estimated fluxes (considering temporal error dependence) are 3% for SO2, 14% for BC, 11% for POM, 14% for DD and 2% for SS. These values represent a decrease as compared to the global-yearly errors from the FG of 7% for SO2, 40% for BC, 55% for POM, 81% for DD and 300% for SS. The largest error reduction, both monthly and yearly, is observed for SS and the smallest one for SO2. The sensitivity and robustness of the inversion system to the choice of the first guess emission inventory is investigated by using different combinations of inventories for industrial, fossil fuel and biomass burning sources. The initial difference in the emissions between the various set-ups is reduced after the inversion. Furthermore, at the global scale, the inversion is sensitive to the choice of the BB (biomass burning) inventory and not so much to the industrial and fossil fuel inventory. At the regional scale, however, the choice of the industrial and fossil fuel inventory can make a difference. The estimated baseline emission fluxes for SO2, BC and POM are within the estimated uncertainties of the four experiments. The resulting emissions were compared against projected emissions for the year 2010 for SO2, BC and POM. The new estimate presents larger emissions than the projections for all three species, with larger differences for SO2 than POM and BC. These projected SO2 emissions are outside the uncertainties of the estimated emission inventories.

A. Jam, F. Hourdin, C. Rio, and F. Couvreux. Resolved Versus Parametrized Boundary-Layer Plumes. Part III: Derivation of a Statistical Scheme for Cumulus Clouds. Boundary-Layer Meteorology, 147:421--441, June 2013. [ bib | DOI | ADS link ]

We present a statistical cloud scheme based on the subgrid-scale distribution of the saturation deficit. When analyzed in large-eddy simulations (LES) of a typical cloudy convective boundary layer, this distribution is shown to be bimodal and reasonably well-fitted by a bi-Gaussian distribution. Thanks to a tracer-based conditional sampling of coherent structures of the convective boundary layer in LES, we demonstrate that one mode corresponds to plumes of buoyant air arising from the surface, and the second to their environment, both within the cloud and sub-cloud layers. According to this analysis, we propose a cloud scheme based on a bi-Gaussian distribution of the saturation deficit, which can be easily coupled with any mass-flux scheme that discriminates buoyant plumes from their environment. For that, the standard deviations of the two Gaussian modes are parametrized starting from the top-hat distribution of the subgrid-scale thermodynamic variables given by the mass-flux scheme. Single-column model simulations of continental and maritime case studies show that this approach allows us to capture the vertical and temporal variations of the cloud cover and liquid water.

R. Winkler, A. Landais, C. Risi, M. Baroni, A. Ekaykin, J. Jouzel, J. R. Petit, F. Prie, B. Minster, and S. Falourd. Interannual variation of water isotopologues at Vostok indicates a contribution from stratospheric water vapor. Proceedings of the National Academy of Science, 110:17674--17679, June 2013. [ bib | DOI | ADS link ]

Combined measurements of water isotopologues of a snow pit at Vostok over the past 60 y reveal a unique signature that cannot be explained only by climatic features as usually done. Comparisons of the data using a general circulation model and a simpler isotopic distillation model reveal a stratospheric signature in the 17O-excess record at Vostok. Our data and theoretical considerations indicate that mass-independent fractionation imprints the isotopic signature of stratospheric water vapor, which may allow for a distinction between stratospheric and tropospheric influences at remote East Antarctic sites.

S. Bony, G. Bellon, D. Klocke, S. Sherwood, S. Fermepin, and S. Denvil. Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nature Geoscience, 6:447--451, June 2013. [ bib | DOI | ADS link ]

Predicting the response of tropical rainfall to climate change remains a challenge. Rising concentrations of carbon dioxide are expected to affect the hydrological cycle through increases in global mean temperature and the water vapour content of the atmosphere. However, regional precipitation changes also closely depend on the atmospheric circulation, which is expected to weaken in a warmer world. Here, we assess the effect of a rise in atmospheric carbon dioxide concentrations on tropical circulation and precipitation by analysing results from a suite of simulations from multiple state-of-the-art climate models, and an operational numerical weather prediction model. In a scenario in which humans continue to use fossil fuels unabated, about half the tropical circulation change projected by the end of the twenty-first century, and consequently a large fraction of the regional precipitation change, is independent of global surface warming. Instead, these robust circulation and precipitation changes are a consequence of the weaker net radiative cooling of the atmosphere associated with higher atmospheric carbon dioxide levels, which affects the strength of atmospheric vertical motions. This implies that geo-engineering schemes aimed at reducing global warming without removing carbon dioxide from the atmosphere would fail to fully mitigate precipitation changes in the tropics. Strategies that may help constrain rainfall projections are suggested.

A. Otto, F. E. L. Otto, O. Boucher, J. Church, G. Hegerl, P. M. Forster, N. P. Gillett, J. Gregory, G. C. Johnson, R. Knutti, N. Lewis, U. Lohmann, J. Marotzke, G. Myhre, D. Shindell, B. Stevens, and M. R. Allen. Energy budget constraints on climate response. Nature Geoscience, 6:415--416, June 2013. [ bib | DOI | ADS link ]

J.-L. Dufresne, M.-A. Foujols, S. Denvil, A. Caubel, O. Marti, O. Aumont, Y. Balkanski, S. Bekki, H. Bellenger, R. Benshila, S. Bony, L. Bopp, P. Braconnot, P. Brockmann, P. Cadule, F. Cheruy, F. Codron, A. Cozic, D. Cugnet, N. de Noblet, J.-P. Duvel, C. Ethé, L. Fairhead, T. Fichefet, S. Flavoni, P. Friedlingstein, J.-Y. Grandpeix, L. Guez, E. Guilyardi, D. Hauglustaine, F. Hourdin, A. Idelkadi, J. Ghattas, S. Joussaume, M. Kageyama, G. Krinner, S. Labetoulle, A. Lahellec, M.-P. Lefebvre, F. Lefevre, C. Levy, Z. X. Li, J. Lloyd, F. Lott, G. Madec, M. Mancip, M. Marchand, S. Masson, Y. Meurdesoif, J. Mignot, I. Musat, S. Parouty, J. Polcher, C. Rio, M. Schulz, D. Swingedouw, S. Szopa, C. Talandier, P. Terray, N. Viovy, and N. Vuichard. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Climate Dynamics, 40:2123--2165, May 2013. [ bib | DOI | ADS link ]

We present the global general circulation model IPSL-CM5 developed to study the long-term response of the climate system to natural and anthropogenic forcings as part of the 5th Phase of the Coupled Model Intercomparison Project (CMIP5). This model includes an interactive carbon cycle, a representation of tropospheric and stratospheric chemistry, and a comprehensive representation of aerosols. As it represents the principal dynamical, physical, and bio-geochemical processes relevant to the climate system, it may be referred to as an Earth System Model. However, the IPSL-CM5 model may be used in a multitude of configurations associated with different boundary conditions and with a range of complexities in terms of processes and interactions. This paper presents an overview of the different model components and explains how they were coupled and used to simulate historical climate changes over the past 150 years and different scenarios of future climate change. A single version of the IPSL-CM5 model (IPSL-CM5A-LR) was used to provide climate projections associated with different socio-economic scenarios, including the different Representative Concentration Pathways considered by CMIP5 and several scenarios from the Special Report on Emission Scenarios considered by CMIP3. Results suggest that the magnitude of global warming projections primarily depends on the socio-economic scenario considered, that there is potential for an aggressive mitigation policy to limit global warming to about two degrees, and that the behavior of some components of the climate system such as the Arctic sea ice and the Atlantic Meridional Overturning Circulation may change drastically by the end of the twenty-first century in the case of a no climate policy scenario. Although the magnitude of regional temperature and precipitation changes depends fairly linearly on the magnitude of the projected global warming (and thus on the scenario considered), the geographical pattern of these changes is strikingly similar for the different scenarios. The representation of atmospheric physical processes in the model is shown to strongly influence the simulated climate variability and both the magnitude and pattern of the projected climate changes.

F. Hourdin, J.-Y. Grandpeix, C. Rio, S. Bony, A. Jam, F. Cheruy, N. Rochetin, L. Fairhead, A. Idelkadi, I. Musat, J.-L. Dufresne, A. Lahellec, M.-P. Lefebvre, and R. Roehrig. LMDZ5B: the atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection. Climate Dynamics, 40:2193--2222, May 2013. [ bib | DOI | ADS link ]

Based on a decade of research on cloud processes, a new version of the LMDZ atmospheric general circulation model has been developed that corresponds to a complete recasting of the parameterization of turbulence, convection and clouds. This LMDZ5B version includes a mass-flux representation of the thermal plumes or rolls of the convective boundary layer, coupled to a bi-Gaussian statistical cloud scheme, as well as a parameterization of the cold pools generated below cumulonimbus by re-evaporation of convective precipitation. The triggering and closure of deep convection are now controlled by lifting processes in the sub-cloud layer. An available lifting energy and lifting power are provided both by the thermal plumes and by the spread of cold pools. The individual parameterizations were carefully validated against the results of explicit high resolution simulations. Here we present the work done to go from those new concepts and developments to a full 3D atmospheric model, used in particular for climate change projections with the IPSL-CM5B coupled model. Based on a series of sensitivity experiments, we document the differences with the previous LMDZ5A version distinguishing the role of parameterization changes from that of model tuning. Improvements found previously in single-column simulations of case studies are confirmed in the 3D model: (1) the convective boundary layer and cumulus clouds are better represented and (2) the diurnal cycle of convective rainfall over continents is delayed by several hours, solving a longstanding problem in climate modeling. The variability of tropical rainfall is also larger in LMDZ5B at intraseasonal time-scales. Significant biases of the LMDZ5A model however remain, or are even sometimes amplified. The paper emphasizes the importance of parameterization improvements and model tuning in the frame of climate change studies as well as the new paradigm that represents the improvement of 3D climate models under the control of single-column case studies simulations.

F. Hourdin, M.-A. Foujols, F. Codron, V. Guemas, J.-L. Dufresne, S. Bony, S. Denvil, L. Guez, F. Lott, J. Ghattas, P. Braconnot, O. Marti, Y. Meurdesoif, and L. Bopp. Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model. Climate Dynamics, 40:2167--2192, May 2013. [ bib | DOI | ADS link ]

The IPSL-CM5A climate model was used to perform a large number of control, historical and climate change simulations in the frame of CMIP5. The refined horizontal and vertical grid of the atmospheric component, LMDZ, constitutes a major difference compared to the previous IPSL-CM4 version used for CMIP3. From imposed-SST (Sea Surface Temperature) and coupled numerical experiments, we systematically analyze the impact of the horizontal and vertical grid resolution on the simulated climate. The refinement of the horizontal grid results in a systematic reduction of major biases in the mean tropospheric structures and SST. The mid-latitude jets, located too close to the equator with the coarsest grids, move poleward. This robust feature, is accompanied by a drying at mid-latitudes and a reduction of cold biases in mid-latitudes relative to the equator. The model was also extended to the stratosphere by increasing the number of layers on the vertical from 19 to 39 (15 in the stratosphere) and adding relevant parameterizations. The 39-layer version captures the dominant modes of the stratospheric variability and exhibits stratospheric sudden warmings. Changing either the vertical or horizontal resolution modifies the global energy balance in imposed-SST simulations by typically several W/m2 which translates in the coupled atmosphere-ocean simulations into a different global-mean SST. The sensitivity is of about 1.2 K per 1 W/m2 when varying the horizontal grid. A re-tuning of model parameters was thus required to restore this energy balance in the imposed-SST simulations and reduce the biases in the simulated mean surface temperature and, to some extent, latitudinal SST variations in the coupled experiments for the modern climate. The tuning hardly compensates, however, for robust biases of the coupled model. Despite the wide range of grid configurations explored and their significant impact on the present-day climate, the climate sensitivity remains essentially unchanged.

C. Rio, J.-Y. Grandpeix, F. Hourdin, F. Guichard, F. Couvreux, J.-P. Lafore, A. Fridlind, A. Mrowiec, R. Roehrig, N. Rochetin, M.-P. Lefebvre, and A. Idelkadi. Control of deep convection by sub-cloud lifting processes: the ALP closure in the LMDZ5B general circulation model. Climate Dynamics, 40:2271--2292, May 2013. [ bib | DOI | ADS link ]

Recently, a new conceptual framework for deep convection scheme triggering and closure has been developed and implemented in the LMDZ5B general circulation model, based on the idea that deep convection is controlled by sub-cloud lifting processes. Such processes include boundary-layer thermals and evaporatively-driven cold pools (wakes), which provide an available lifting energy that is compared to the convective inhibition to trigger deep convection, and an available lifting power (ALP) at cloud base, which is used to compute the convective mass flux assuming the updraft vertical velocity at the level of free convection. While the ALP closure was shown to delay the local hour of maximum precipitation over land in better agreement with observations, it results in an underestimation of the convection intensity over the tropical ocean both in the 1D and 3D configurations of the model. The specification of the updraft vertical velocity at the level of free convection appears to be a key aspect of the closure formulation, as it is weaker over tropical ocean than over land and weaker in moist mid-latitudes than semi-arid regions. We propose a formulation making this velocity increase with the level of free convection, so that the ALP closure is adapted to various environments. Cloud-resolving model simulations of observed oceanic and continental case studies are used to evaluate the representation of lifting processes and test the assumptions at the basis of the ALP closure formulation. Results favor closures based on the lifting power of sub-grid sub-cloud processes rather than those involving quasi-equilibrium with the large-scale environment. The new version of the model including boundary-layer thermals and cold pools coupled together with the deep convection scheme via the ALP closure significantly improves the representation of various observed case studies in 1D mode. It also substantially modifies precipitation patterns in the full 3D version of the model, including seasonal means, diurnal cycle and intraseasonal variability.

F. Cheruy, A. Campoy, J.-C. Dupont, A. Ducharne, F. Hourdin, M. Haeffelin, M. Chiriaco, and A. Idelkadi. Combined influence of atmospheric physics and soil hydrology on the simulated meteorology at the SIRTA atmospheric observatory. Climate Dynamics, 40:2251--2269, May 2013. [ bib | DOI | ADS link ]

The identification of the land-atmosphere interactions as one of the key source of uncertainty in climate models calls for process-level assessment of the coupled atmosphere/land continental surface system in numerical climate models. To this end, we propose a novel approach and apply it to evaluate the standard and new parametrizations of boundary layer/convection/clouds in the Earth System Model (ESM) of Institut Pierre Simon Laplace (IPSL), which differentiate the IPSL-CM5A and IPSL-CM5B climate change simulations produced for the Coupled Model Inter-comparison Project phase 5 exercise. Two different land surface hydrology parametrizations are also considered to analyze different land-atmosphere interactions. Ten-year simulations of the coupled land surface/atmospheric ESM modules are confronted to observations collected at the SIRTA (Site Instrumental de Recherche par Télédection Atmosphérique), located near Paris (France). For sounder evaluation of the physical parametrizations, the grid of the model is stretched and refined in the vicinity of the SIRTA, and the large scale component of the modeled circulation is adjusted toward ERA-Interim reanalysis outside of the zoomed area. This allows us to detect situations where the parametrizations do not perform satisfactorily and can affect climate simulations at the regional/continental scale, including in full 3D coupled runs. In particular, we show how the biases in near surface state variables simulated by the ESM are explained by (1) the sensible/latent heat partitionning at the surface, (2) the low level cloudiness and its radiative impact at the surface, (3) the parametrization of turbulent transport in the surface layer, (4) the complex interplay between these processes. We also show how the new set of parametrizations can improve these biases.

B. Stevens and S. Bony. What Are Climate Models Missing? Science, 340:1053--1054, May 2013. [ bib | DOI | ADS link ]

L. C. Sime, C. Risi, J. C. Tindall, J. Sjolte, E. W. Wolff, V. Masson-Delmotte, and E. Capron. Warm climate isotopic simulations: what do we learn about interglacial signals in Greenland ice cores? Quaternary Science Reviews, 67:59--80, May 2013. [ bib | DOI | ADS link ]

Measurements of Last Interglacial stable water isotopes in ice cores show that central Greenland δ18O increased by at least 3 compared to present day. Attempting to quantify the Greenland interglacial temperature change from these ice core measurements rests on our ability to interpret the stable water isotope content of Greenland snow. Current orbitally driven interglacial simulations do not show δ18O or temperature rises of the correct magnitude, leading to difficulty in using only these experiments to inform our understanding of higher interglacial δ18O. Here, analysis of greenhouse gas warmed simulations from two isotope-enabled general circulation models, in conjunction with a set of Last Interglacial sea surface observations, indicates a possible explanation for the interglacial δ18O rise. A reduction in the winter time sea ice concentration around the northern half of Greenland, together with an increase in sea surface temperatures over the same region, is found to be sufficient to drive a 3 interglacial enrichment in central Greenland snow. Warm climate δ18O and δD in precipitation falling on Greenland are shown to be strongly influenced by local sea surface condition changes: local sea surface warming and a shrunken sea ice extent increase the proportion of water vapour from local (isotopically enriched) sources, compared to that from distal (isotopically depleted) sources. Precipitation intermittency changes, under warmer conditions, leads to geographical variability in the δ18O against temperature gradients across Greenland. Little sea surface warming around the northern areas of Greenland leads to low δ18O against temperature gradients (0.1-0.3 per degC), whilst large sea surface warmings in these regions leads to higher gradients (0.3-0.7 per degC). These gradients imply a wide possible range of present day to interglacial temperature increases (4 to 10 degC). Thus, we find that uncertainty about local interglacial sea surface conditions, rather than precipitation intermittency changes, may lead to the largest uncertainties in interpreting temperature from Greenland ice cores. We find that interglacial sea surface change observational records are currently insufficient to enable discrimination between these different δ18O against temperature gradients. In conclusion, further information on interglacial sea surface temperatures and sea ice changes around northern Greenland should indicate whether +5 degC during the Last Interglacial is sufficient to drive the observed ice core δ18O increase, or whether a larger temperature increases or ice sheet changes are also required to explain the ice core observations.

R. A. Eagle, C. Risi, J. L. Mitchell, J. M. Eiler, U. Seibt, J. D. Neelin, G. Li, and A. K. Tripati. High regional climate sensitivity over continental China constrained by glacial-recent changes in temperature and the hydrological cycle. Proceedings of the National Academy of Science, 110:8813--8818, May 2013. [ bib | DOI | ADS link ]

The East Asian monsoon is one of Earth's most significant climatic phenomena, and numerous paleoclimate archives have revealed that it exhibits variations on orbital and suborbital time scales. Quantitative constraints on the climate changes associated with these past variations are limited, yet are needed to constrain sensitivity of the region to changes in greenhouse gas levels. Here, we show central China is a region that experienced a much larger temperature change since the Last Glacial Maximum than typically simulated by climate models. We applied clumped isotope thermometry to carbonates from the central Chinese Loess Plateau to reconstruct temperature and water isotope shifts from the Last Glacial Maximum to present. We find a summertime temperature change of 6-7 degC that is reproduced by climate model simulations presented here. Proxy data reveal evidence for a shift to lighter isotopic composition of meteoric waters in glacial times, which is also captured by our model. Analysis of model outputs suggests that glacial cooling over continental China is significantly amplified by the influence of stationary waves, which, in turn, are enhanced by continental ice sheets. These results not only support high regional climate sensitivity in Central China but highlight the fundamental role of planetary-scale atmospheric dynamics in the sensitivity of regional climates to continental glaciation, changing greenhouse gas levels, and insolation.

R. T. Clancy, B. J. Sandor, M. J. Wolff, M. D. Smith, F. LefèVre, J.-B. Madeleine, F. Forget, S. L. Murchie, F. P. Seelos, K. D. Seelos, H. Nair, A. D. Toigo, D. Humm, D. M. Kass, A. KleinböHl, and N. Heavens. Correction to ”Extensive MRO CRISM observations of 1.27 m O2 airglow in Mars polar night and their comparison to MRO MCS temperature profiles and LMD GCM simulations”. Journal of Geophysical Research (Planets), 118:1148--1154, May 2013. [ bib | DOI | ADS link ]

T. Wu, W. Li, J. Ji, X. Xin, L. Li, Z. Wang, Y. Zhang, J. Li, F. Zhang, M. Wei, X. Shi, F. Wu, L. Zhang, M. Chu, W. Jie, Y. Liu, F. Wang, X. Liu, Q. Li, M. Dong, X. Liang, Y. Gao, and J. Zhang. Global carbon budgets simulated by the Beijing Climate Center Climate System Model for the last century. Journal of Geophysical Research (Atmospheres), 118:4326--4347, May 2013. [ bib | DOI | ADS link ]

The paper examines terrestrial and oceanic carbon budgets from preindustrial time to present day in the version of Beijing Climate Center Climate System Model (BCC_CSM1.1) which is a global fully coupled climate-carbon cycle model. Atmospheric CO2 concentration is calculated from a prognostic equation taking into account global anthropogenic CO2 emissions and the interactive CO2 exchanges of land-atmosphere and ocean-atmosphere. When forced by prescribed historical emissions of CO2 from combustion of fossil fuels and land use change, BCC_CSM1.1 can reproduce the trends of observed atmospheric CO2 concentration and global surface air temperature from 1850 to 2005. Simulated interannual variability and long-term trend of global carbon sources and sinks and their spatial patterns generally agree with other model estimates and observations, which shows the following: (1) Both land and ocean in the last century act as net carbon sinks. The ability of carbon uptake by land and ocean is enhanced at the end of last century. (2) Interannual variability of the global atmospheric CO2 concentration is closely correlated with the El Niño-Southern Oscillation cycle, in agreement with observations. (3) Interannual variation of the land-to-atmosphere net carbon flux is positively correlated with surface air temperature while negatively correlated with soil moisture over low and midlatitudes. The relative contribution of soil moisture to the interannual variation of land-atmosphere CO2 exchange is more important than that of air temperature over tropical regions, while surface air temperature is more important than soil moisture over other regions of the globe.

F. Brient and S. Bony. Interpretation of the positive low-cloud feedback predicted by a climate model under global warming. Climate Dynamics, 40:2415--2431, May 2013. [ bib | DOI | ADS link ]

The response of low-level clouds to climate change has been identified as a major contributor to the uncertainty in climate sensitivity estimates among climate models. By analyzing the behaviour of low-level clouds in a hierarchy of models (coupled ocean-atmosphere model, atmospheric general circulation model, aqua-planet model, single-column model) using the same physical parameterizations, this study proposes an interpretation of the strong positive low-cloud feedback predicted by the IPSL-CM5A climate model under climate change. In a warmer climate, the model predicts an enhanced clear-sky radiative cooling, stronger surface turbulent fluxes, a deepening and a drying of the planetary boundary layer, and a decrease of tropical low-clouds in regimes of weak subsidence. We show that the decrease of low-level clouds critically depends on the change in the vertical advection of moist static energy from the free troposphere to the boundary-layer. This change is dominated by variations in the vertical gradient of moist static energy between the surface and the free troposphere just above the boundary-layer. In a warmer climate, the thermodynamical relationship of Clausius-Clapeyron increases this vertical gradient, and then the import by large-scale subsidence of low moist static energy and dry air into the boundary layer. This results in a decrease of the low-level cloudiness and in a weakening of the radiative cooling of the boundary layer by low-level clouds. The energetic framework proposed in this study might help to interpret inter-model differences in low-cloud feedbacks under climate change.

J. Cattiaux, B. Quesada, A. Arakélian, F. Codron, R. Vautard, and P. Yiou. North-Atlantic dynamics and European temperature extremes in the IPSL model: sensitivity to atmospheric resolution. Climate Dynamics, 40:2293--2310, May 2013. [ bib | DOI | ADS link ]

The variability of the European climate is mostly controlled by the unstable nature of the North-Atlantic dynamics, especially in wintertime. The intra-seasonal to inter-annual fluctuations of atmospheric circulations has often been described as the alternation between a limited number of preferential weather regimes. Such discrete description can be justified by the multi-modality of the latitudinal position of the jet stream. In addition, seasonal extremes in European temperatures are generally associated with an exceptional persistence into one weather regime. Here we investigate the skill of the IPSL model to both simulate North-Atlantic weather regimes and European temperature extremes, including summer heat waves and winter cold spells. We use a set of eight IPSL experiments, with six different horizontal resolutions and the two versions used in CMIP3 and CMIP5. We find that despite a substantial deficit in the simulated poleward peak of the jet stream, the IPSL model represents weather regimes fairly well. A significant improvement is found for all horizontal resolutions higher than the one used in CMIP3, while the increase in vertical resolution included in the CMIP5 version tends to improve the wintertime dynamics. In addition to a recurrent cold bias over Europe, the IPSL model generally overestimates (underestimates) the indices of winter cold spells (summer heat waves) such as frequencies or durations. We find that the increase in horizontal resolution almost always improves these statistics, while the influence of vertical resolution is less clear. Overall, the CMIP5 version of the IPSL model appears to carry promising improvements in the simulation of the European climate variability.

S. Szopa, Y. Balkanski, M. Schulz, S. Bekki, D. Cugnet, A. Fortems-Cheiney, S. Turquety, A. Cozic, C. Déandreis, D. Hauglustaine, A. Idelkadi, J. Lathière, F. Lefevre, M. Marchand, R. Vuolo, N. Yan, and J.-L. Dufresne. Aerosol and ozone changes as forcing for climate evolution between 1850 and 2100. Climate Dynamics, 40:2223--2250, May 2013. [ bib | DOI | ADS link ]

Global aerosol and ozone distributions and their associated radiative forcings were simulated between 1850 and 2100 following a recent historical emission dataset and under the representative concentration pathways (RCP) for the future. These simulations were used in an Earth System Model to account for the changes in both radiatively and chemically active compounds, when simulating the climate evolution. The past negative stratospheric ozone trends result in a negative climate forcing culminating at -0.15 W m-2 in the 1990s. In the meantime, the tropospheric ozone burden increase generates a positive climate forcing peaking at 0.41 W m-2. The future evolution of ozone strongly depends on the RCP scenario considered. In RCP4.5 and RCP6.0, the evolution of both stratospheric and tropospheric ozone generate relatively weak radiative forcing changes until 2060-2070 followed by a relative 30 % decrease in radiative forcing by 2100. In contrast, RCP8.5 and RCP2.6 model projections exhibit strongly different ozone radiative forcing trajectories. In the RCP2.6 scenario, both effects (stratospheric ozone, a negative forcing, and tropospheric ozone, a positive forcing) decline towards 1950s values while they both get stronger in the RCP8.5 scenario. Over the twentieth century, the evolution of the total aerosol burden is characterized by a strong increase after World War II until the middle of the 1980s followed by a stabilization during the last decade due to the strong decrease in sulfates in OECD countries since the 1970s. The cooling effects reach their maximal values in 1980, with -0.34 and -0.28 W m-2 respectively for direct and indirect total radiative forcings. According to the RCP scenarios, the aerosol content, after peaking around 2010, is projected to decline strongly and monotonically during the twenty-first century for the RCP8.5, 4.5 and 2.6 scenarios. While for RCP6.0 the decline occurs later, after peaking around 2050. As a consequence the relative importance of the total cooling effect of aerosols becomes weaker throughout the twenty-first century compared with the positive forcing of greenhouse gases. Nevertheless, both surface ozone and aerosol content show very different regional features depending on the future scenario considered. Hence, in 2050, surface ozone changes vary between -12 and +12 ppbv over Asia depending on the RCP projection, whereas the regional direct aerosol radiative forcing can locally exceed -3 W m-2.

J. Mignot and S. Bony. Presentation and analysis of the IPSL and CNRM climate models used in CMIP5. Climate Dynamics, 40:2089--2089, May 2013. [ bib | DOI | ADS link ]

J. Zhang, L. Li, T. Zhou, and X. Xin. Variation of surface temperature during the last millennium in a simulation with the FGOALS-gl climate system model. Advances in Atmospheric Sciences, 30:699--712, May 2013. [ bib | DOI | ADS link ]

A reasonable past millennial climate simulation relies heavily on the specified external forcings, including both natural and anthropogenic forcing agents. In this paper, we examine the surface temperature responses to specified external forcing agents in a millennium-scale transient climate simulation with the fast version of LASG IAP Flexible Global Ocean-Atmosphere-Land System model (FGOALS-gl) developed in the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics (LASG/IAP). The model presents a reasonable performance in comparison with reconstructions of surface temperature. Differentiated from significant changes in the 20th century at the global scale, changes during the natural-forcing-dominant period are mainly manifested in the Northern Hemisphere. Seasonally, modeled significant changes are more pronounced during the wintertime at higher latitudes. This may be a manifestation of polar amplification associated with sea-ice-temperature positive feedback. The climate responses to total external forcings can explain about half of the climate variance during the whole millennium period, especially at decadal timescales. Surface temperature in the Antarctic shows heterogeneous and insignificant changes during the preindustrial period and the climate response to external forcings is undetectable due to the strong internal variability. The model response to specified external forcings is modulated by cloud radiative forcing (CRF). The CRF acts against the fluctuations of external forcings. Effects of clouds are manifested in shortwave radiation by changes in cloud water during the natural-forcing-dominant period, but mainly in longwave radiation by a decrease in cloud amount in the anthropogenic-forcing-dominant period.

H. C. Steen-Larsen, S. J. Johnsen, V. Masson-Delmotte, B. Stenni, C. Risi, H. Sodemann, D. Balslev-Clausen, T. Blunier, D. Dahl-Jensen, M. D. Ellehøj, S. Falourd, A. Grindsted, V. Gkinis, J. Jouzel, T. Popp, S. Sheldon, S. B. Simonsen, J. Sjolte, J. P. Steffensen, P. Sperlich, A. E. Sveinbjörnsdóttir, B. M. Vinther, and J. W. C. White. Continuous monitoring of summer surface water vapor isotopic composition above the Greenland Ice Sheet. Atmospheric Chemistry & Physics, 13:4815--4828, May 2013. [ bib | DOI | ADS link ]

We present here surface water vapor isotopic measurements conducted from June to August 2010 at the NEEM (North Greenland Eemian Drilling Project) camp, NW Greenland (77.45deg N, 51.05deg W, 2484 m a.s.l.). Measurements were conducted at 9 different heights from 0.1 m to 13.5 m above the snow surface using two different types of cavity-enhanced near-infrared absorption spectroscopy analyzers. For each instrument specific protocols were developed for calibration and drift corrections. The inter-comparison of corrected results from different instruments reveals excellent reproducibility, stability, and precision with a standard deviations of ˜ 0.23 for δ18O and ˜ 1.4 for δD. Diurnal and intraseasonal variations show strong relationships between changes in local surface humidity and water vapor isotopic composition, and with local and synoptic weather conditions. This variability probably results from the interplay between local moisture fluxes, linked with firn-air exchanges, boundary layer dynamics, and large-scale moisture advection. Particularly remarkable are several episodes characterized by high ( 40) surface water vapor deuterium excess. Air mass back-trajectory calculations from atmospheric analyses and water tagging in the LMDZiso (Laboratory of Meteorology Dynamics Zoom-isotopic) atmospheric model reveal that these events are associated with predominant Arctic air mass origin. The analysis suggests that high deuterium excess levels are a result of strong kinetic fractionation during evaporation at the sea-ice margin.

A. Spiga, J. Faure, J.-B. Madeleine, A. Määttänen, and F. Forget. Rocket dust storms and detached dust layers in the Martian atmosphere. Journal of Geophysical Research (Planets), 118:746--767, April 2013. [ bib | DOI | arXiv | ADS link ]

Airborne dust is the main climatic agent in the Martian environment. Local dust storms play a key role in the dust cycle; yet their life cycle is poorly known. Here we use mesoscale modeling that includes the transport of radiatively active dust to predict the evolution of a local dust storm monitored by OMEGA on board Mars Express. We show that the evolution of this dust storm is governed by deep convective motions. The supply of convective energy is provided by the absorption of incoming sunlight by dust particles, rather than by latent heating as in moist convection on Earth. We propose to use the terminology ”rocket dust storm,” or conio-cumulonimbus, to describe those storms in which rapid and efficient vertical transport takes place, injecting dust particles at high altitudes in the Martian troposphere (30-50 km). Combined to horizontal transport by large-scale winds, rocket dust storms produce detached layers of dust reminiscent of those observed with Mars Global Surveyor and Mars Reconnaissance Orbiter. Since nighttime sedimentation is less efficient than daytime convective transport, and the detached dust layers can convect during the daytime, these layers can be stable for several days. The peak activity of rocket dust storms is expected in low-latitude regions at clear seasons (late northern winter to late northern summer), which accounts for the high-altitude tropical dust maxima unveiled by Mars Climate Sounder. Dust-driven deep convection has strong implications for the Martian dust cycle, thermal structure, atmospheric dynamics, cloud microphysics, chemistry, and robotic and human exploration.

H. Su, J. H. Jiang, C. Zhai, V. S. Perun, J. T. Shen, A. Del Genio, L. S. Nazarenko, L. J. Donner, L. Horowitz, C. Seman, C. Morcrette, J. Petch, M. Ringer, J. Cole, K. von Salzen, M. S. Mesquita, T. Iversen, J. E. Kristjansson, A. Gettelman, L. Rotstayn, S. Jeffrey, J.-L. Dufresne, M. Watanabe, H. Kawai, T. Koshiro, T. Wu, E. M. Volodin, T. L'Ecuyer, J. Teixeira, and G. L. Stephens. Diagnosis of regime-dependent cloud simulation errors in CMIP5 models using ”A-Train” satellite observations and reanalysis data. Journal of Geophysical Research (Atmospheres), 118:2762--2780, April 2013. [ bib | DOI | ADS link ]

The vertical distributions of cloud water content (CWC) and cloud fraction (CF) over the tropical oceans, produced by 13 coupled atmosphere-ocean models submitted to the Phase 5 of Coupled Model Intercomparison Project (CMIP5), are evaluated against CloudSat/CALIPSO observations as a function of large-scale parameters. Available CALIPSO simulator CF outputs are also examined. A diagnostic framework is developed to decompose the cloud simulation errors into large-scale errors, cloud parameterization errors and covariation errors. We find that the cloud parameterization errors contribute predominantly to the total errors for all models. The errors associated with large-scale temperature and moisture structures are relatively greater than those associated with large-scale midtropospheric vertical velocity and lower-level divergence. All models capture the separation of deep and shallow clouds in distinct large-scale regimes; however, the vertical structures of high/low clouds and their variations with large-scale parameters differ significantly from the observations. The CWCs associated with deep convective clouds simulated in most models do not reach as high in altitude as observed, and their magnitudes are generally weaker than CloudSat total CWC, which includes the contribution of precipitating condensates, but are close to CloudSat nonprecipitating CWC. All models reproduce maximum CF associated with convective detrainment, but CALIPSO simulator CFs generally agree better with CloudSat/CALIPSO combined retrieval than the model CFs, especially in the midtroposphere. Model simulated low clouds tend to have little variation with large-scale parameters except lower-troposphere stability, while the observed low cloud CWC, CF, and cloud top height vary consistently in all large-scale regimes.

M. Ménégoz, G. Krinner, Y. Balkanski, A. Cozic, O. Boucher, and P. Ciais. Boreal and temperate snow cover variations induced by black carbon emissions in the middle of the 21st century. The Cryosphere, 7:537--554, March 2013. [ bib | DOI | ADS link ]

We used a coupled climate-chemistry model to quantify the impacts of aerosols on snow cover north of 30deg N both for the present-day and for the middle of the 21st century. Black carbon (BC) deposition over continents induces a reduction in the mean number of days with snow at the surface (MNDWS) that ranges from 0 to 10 days over large areas of Eurasia and Northern America for the present-day relative to the pre-industrial period. This is mainly due to BC deposition during the spring, a period of the year when the remaining of snow accumulated during the winter is exposed to both strong solar radiation and a large amount of aerosol deposition induced themselves by a high level of transport of particles from polluted areas. North of 30deg N, this deposition flux represents 222 Gg BC month-1 on average from April to June in our simulation. A large reduction in BC emissions is expected in the future in all of the Representative Concentration Pathway (RCP) scenarios. In particular, considering the RCP8.5 in our simulation leads to a decrease in the spring BC deposition down to 110 Gg month-1 in the 2050s. However, despite the reduction of the aerosol impact on snow, the MNDWS is strongly reduced by 2050, with a decrease ranging from 10 to 100 days from present-day values over large parts of the Northern Hemisphere. This reduction is essentially due to temperature increase, which is quite strong in the RCP8.5 scenario in the absence of climate mitigation policies. Moreover, the projected sea-ice retreat in the next decades will open new routes for shipping in the Arctic. However, a large increase in shipping emissions in the Arctic by the mid-21st century does not lead to significant changes of BC deposition over snow-covered areas in our simulation. Therefore, the MNDWS is clearly not affected through snow darkening effects associated with these Arctic ship emissions. In an experiment without nudging toward atmospheric reanalyses, we simulated however some changes of the MNDWS considering such aerosol ship emissions. These changes are generally not statistically significant in boreal continents, except in Quebec and in the West Siberian plains, where they range between -5 and -10 days. They are induced both by radiative forcings of the aerosols when they are in the snow and in the atmosphere, and by all the atmospheric feedbacks. These experiments do not take into account the feedbacks induced by the interactions between ocean and atmosphere as they were conducted with prescribed sea surface temperatures. Climate change by the mid-21st century could also cause biomass burning activity (forest fires) to become more intense and occur earlier in the season. In an idealised scenario in which forest fires are 50% stronger and occur 2 weeks earlier and later than at present, we simulated an increase in spring BC deposition of 21 Gg BC month-1 over continents located north of 30deg N. This BC deposition does not impact directly the snow cover through snow darkening effects. However, in an experiment considering all the aerosol forcings and atmospheric feedbacks, except those induced by the ocean-atmosphere interactions, enhanced fire activity induces a significant decrease of the MNDWS reaching a dozen of days in Quebec and in Eastern Siberia.

L. Kerber, F. Forget, J.-B. Madeleine, R. Wordsworth, J. W. Head, and L. Wilson. The effect of atmospheric pressure on the dispersal of pyroclasts from martian volcanoes. Icarus, 223:149--156, March 2013. [ bib | DOI | ADS link ]

A planetary global circulation model developed by the Laboratoire de Météorologie Dynamique (LMD) was used to simulate explosive eruptions of ancient martian volcanoes into paleo-atmospheres with higher atmospheric pressures than that of present-day Mars. Atmospheric pressures in the model were varied between 50 mbar and 2 bars. In this way it was possible to investigate the sensitivity of the volcanic plume dispersal model to atmospheric pressure. It was determined that the model has a sensitivity to pressure that is similar to its sensitivity to other atmospheric parameters such as planetary obliquity and season of eruption. Higher pressure atmospheres allow volcanic plumes to convect to higher levels, meaning that volcanic pyroclasts have further to fall through the atmosphere. Changes in atmospheric circulation due to pressure cause pyroclasts to be dispersed in narrower latitudinal bands compared with pyroclasts in a modern atmosphere. Atmospheric winds are generally slower under higher pressure regimes; however, the final distance traveled by the pyroclasts depends greatly on the location of the volcano and can either increase or decrease with pressure. The directionality of the pyroclast transport, however, remains dominantly east or west along lines of latitude. Augmentation of the atmospheric pressure improves the fit between possible ash sources Arsia and Pavonis Mons and the Medusae Fossae Formation, a hypothesized ash deposit.

M. Casado, P. Ortega, V. Masson-Delmotte, C. Risi, D. Swingedouw, V. Daux, D. Genty, F. Maignan, O. Solomina, B. Vinther, N. Viovy, and P. Yiou. Impact of precipitation intermittency on NAO-temperature signals in proxy records. Climate of the Past, 9:871--886, March 2013. [ bib | DOI | ADS link ]

In mid and high latitudes, the stable isotope ratio in precipitation is driven by changes in temperature, which control atmospheric distillation. This relationship forms the basis for many continental paleoclimatic reconstructions using direct (e.g. ice cores) or indirect (e.g. tree ring cellulose, speleothem calcite) archives of past precipitation. However, the archiving process is inherently biased by intermittency of precipitation. Here, we use two sets of atmospheric reanalyses (NCEP (National Centers for Environmental Prediction) and ERA-interim) to quantify this precipitation intermittency bias, by comparing seasonal (winter and summer) temperatures estimated with and without precipitation weighting. We show that this bias reaches up to 10 degC and has large interannual variability. We then assess the impact of precipitation intermittency on the strength and stability of temporal correlations between seasonal temperatures and the North Atlantic Oscillation (NAO). Precipitation weighting reduces the correlation between winter NAO and temperature in some areas (e.g. Québec, South-East USA, East Greenland, East Siberia, Mediterranean sector) but does not alter the main patterns of correlation. The correlations between NAO, δ18O in precipitation, temperature and precipitation weighted temperature are investigated using outputs of an atmospheric general circulation model enabled with stable isotopes and nudged using reanalyses (LMDZiso (Laboratoire de Météorologie Dynamique Zoom)). In winter, LMDZiso shows similar correlation values between the NAO and both the precipitation weighted temperature and δ18O in precipitation, thus suggesting limited impacts of moisture origin. Correlations of comparable magnitude are obtained for the available observational evidence (GNIP (Global Network of Isotopes in Precipitation) and Greenland ice core data). Our findings support the use of archives of past δ18O for NAO reconstructions.

Y. Chavaillaz, F. Codron, and M. Kageyama. Southern westerlies in LGM and future (RCP4.5) climates. Climate of the Past, 9:517--524, March 2013. [ bib | DOI | ADS link ]

Mid-latitude westerlies are a major component of the atmospheric circulation and understanding their behaviour under climate change is important for understanding changes in precipitation, storms and atmosphere-ocean momentum, heat and CO2 exchanges. The Southern Hemisphere westerlies have been particularly studied in terms of the latter aspects, since the Southern Ocean is a key region for the global oceanic circulation as well as for CO2 uptake. In this study, we analyse, mainly in terms of jet stream position, the behaviour of the southern westerlies for the Last Glacial Maximum (LGM, 21 000 yr ago, which is the last past cold extreme) and for a future climate, obtained after stabilisation of the RCP4.5 scenario. The a priori guess would be that the behaviour of the westerly jet stream would be similar when examining its changes from LGM to pre-industrial (PI) conditions and from PI to RCP4.5, i.e. in both cases a poleward shift in response to global warming. We show that this is in fact not the case, due to the impact of altitude changes of the Antarctic ice sheet and/or to sea ice cover changes.

P. Stier, N. A. J. Schutgens, N. Bellouin, H. Bian, O. Boucher, M. Chin, S. Ghan, N. Huneeus, S. Kinne, G. Lin, X. Ma, G. Myhre, J. E. Penner, C. A. Randles, B. Samset, M. Schulz, T. Takemura, F. Yu, H. Yu, and C. Zhou. Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom Prescribed intercomparison study. Atmospheric Chemistry & Physics, 13:3245--3270, March 2013. [ bib | DOI | ADS link ]

Simulated multi-model ”diversity” in aerosol direct radiative forcing estimates is often perceived as a measure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated ”host-model uncertainties” are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in twelve participating models. <BR /><BR /> Even with prescribed aerosol radiative properties, simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is -4.47 Wm-2 and the inter-model standard deviation is 0.55 Wm-2, corresponding to a relative standard deviation of 12%. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.04 Wm-2, and the standard deviation increases to 1.01 W-2, corresponding to a significant relative standard deviation of 97%. However, the top-of-atmosphere forcing variability owing to absorption (subtracting the scattering case from the case with scattering and absorption) is low, with absolute (relative) standard deviations of 0.45 Wm-2 (8%) clear-sky and 0.62 Wm-2 (11%) all-sky. <BR /><BR /> Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative forcing in the AeroCom Direct Effect experiment demonstrates that host model uncertainties could explain about 36% of the overall sulfate forcing diversity of 0.11 Wm-2 in the AeroCom Direct Radiative Effect experiment. <BR /><BR /> Host model errors in aerosol radiative forcing are largest in regions of uncertain host model components, such as stratocumulus cloud decks or areas with poorly constrained surface albedos, such as sea ice. Our results demonstrate that host model uncertainties are an important component of aerosol forcing uncertainty that require further attention.

M. T. Woodhouse, G. W. Mann, K. S. Carslaw, and O. Boucher. Sensitivity of cloud condensation nuclei to regional changes in dimethyl-sulphide emissions. Atmospheric Chemistry & Physics, 13:2723--2733, March 2013. [ bib | DOI | ADS link ]

The atmospheric oxidation of dimethyl-sulphide (DMS) derived from marine phytoplankton is a significant source of marine sulphate aerosol. DMS has been proposed to regulate climate via changes in cloud properties, though recent studies have shown that present-day global cloud condensation nuclei (CCN) concentrations have only a weak dependence on the total emission flux of DMS. Here, we use a global aerosol microphysics model to examine how efficiently CCN are produced when DMS emissions are changed in different marine regions. We find that global CCN production per unit mass of sulphur emitted varies by more than a factor of 20 depending on where the change in oceanic DMS emission flux is applied. The variation in CCN production efficiency depends upon where CCN production processes (DMS oxidation, SO2 oxidation, nucleation and growth) are most efficient and removal processes (deposition) least efficient. The analysis shows that the production of aerosol sulphate through aqueous-phase oxidation of SO2 limits the amount of H2SO4 available for nucleation and condensational growth and therefore suppresses CCN formation, leading to the weak response of CCN to changes in DMS emission. Our results show that past and future changes in the spatial distribution of DMS emissions (through changes in the phytoplankton population or wind speed patterns) could exert a stronger control on climate than net increases in biological productivity.

C. K. Folland, A. W. Colman, D. M. Smith, O. Boucher, D. E. Parker, and J.-P. Vernier. High predictive skill of global surface temperature a year ahead. Geophysical Research Letters, 40:761--767, February 2013. [ bib | DOI | ADS link ]

We discuss 13 real-time forecasts of global annual-mean surface temperature issued by the United Kingdom Met Office for 1 year ahead for 2000-2012. These involve statistical, and since 2008, initialized dynamical forecasts using the Met Office DePreSys system. For the period when the statistical forecast system changed little, 2000-2010, issued forecasts had a high correlation of 0.74 with observations and a root mean square error of 0.07degC. However, the HadCRUT data sets against which issued forecasts were verified were biased slightly cold, especially from 2004, because of data gaps in the strongly warming Arctic. This observational cold bias was mainly responsible for a statistically significant warm bias in the 2000-2010 forecasts of 0.06degC. Climate forcing data sets used in the statistical method, and verification data, have recently been modified, increasing hindcast correlation skill to 0.80 with no significant bias. Dynamical hindcasts for 2000-2011 have a similar correlation skill of 0.78 and skillfully hindcast annual mean spatial global surface temperature patterns. Such skill indicates that we have a good understanding of the main factors influencing global mean surface temperature.

J. Körper, I. Höschel, J. A. Lowe, C. D. Hewitt, D. Salas y Melia, E. Roeckner, H. Huebener, J.-F. Royer, J.-L. Dufresne, A. Pardaens, M. A. Giorgetta, M. G. Sanderson, O. H. Otterå, J. Tjiputra, and S. Denvil. The effects of aggressive mitigation on steric sea level rise and sea ice changes. Climate Dynamics, 40:531--550, February 2013. [ bib | DOI | ADS link ]

With an increasing political focus on limiting global warming to less than 2 degC above pre-industrial levels it is vital to understand the consequences of these targets on key parts of the climate system. Here, we focus on changes in sea level and sea ice, comparing twenty-first century projections with increased greenhouse gas concentrations (using the mid-range IPCC A1B emissions scenario) with those under a mitigation scenario with large reductions in emissions (the E1 scenario). At the end of the twenty-first century, the global mean steric sea level rise is reduced by about a third in the mitigation scenario compared with the A1B scenario. Changes in surface air temperature are found to be poorly correlated with steric sea level changes. While the projected decreases in sea ice extent during the first half of the twenty-first century are independent of the season or scenario, especially in the Arctic, the seasonal cycle of sea ice extent is amplified. By the end of the century the Arctic becomes sea ice free in September in the A1B scenario in most models. In the mitigation scenario the ice does not disappear in the majority of models, but is reduced by 42 % of the present September extent. Results for Antarctic sea ice changes reveal large initial biases in the models and a significant correlation between projected changes and the initial extent. This latter result highlights the necessity for further refinements in Antarctic sea ice modelling for more reliable projections of future sea ice.

C. Frankenberg, D. Wunch, G. Toon, C. Risi, R. Scheepmaker, J.-E. Lee, P. Wennberg, and J. Worden. Water vapor isotopologue retrievals from high-resolution GOSAT shortwave infrared spectra. Atmospheric Measurement Techniques, 6:263--274, February 2013. [ bib | DOI | ADS link ]

Remote sensing of the isotopic composition of water vapor can provide valuable information on the hydrological cycle. Here, we demonstrate the feasibility of retrievals of the relative abundance of HDO (the HDO/H2O ratio) from the Japanese GOSAT satellite. For this purpose, we use high spectral resolution nadir radiances around 6400 cm-1 (1.56 μm) to retrieve vertical column amounts of H2O and HDO. Retrievals of H2O correlate well with ECMWF (European Centre for Medium-Range Weather Forecasts) integrated profiles (r2 = 0.96). Typical precision errors in the retrieved column-averaged deuterium depletion (δD) are 20-40. We compare δD against a TCCON (Total Carbon Column Observing Network) ground-based station in Lamont, Oklahoma. Using retrievals in very dry areas over Antarctica, we detect a small systematic offset in retrieved H2O and HDO column amounts and take this into account for a bias correction of δD. Monthly averages of δD in the June 2009 to September 2011 time frame are well correlated with TCCON (r2 = 0.79) and exhibit a slope of 0.98 (1.23 if not bias corrected). We also compare seasonal averages on the global scale with results from the SCIAMACHY instrument in the 2003-2005 time frame. Despite the lack of temporal overlap, seasonal averages in general agree well, with spatial correlations (r2) ranging from 0.62 in September through November to 0.83 in June through August. However, we observe higher variability in GOSAT δD, indicated by fitted slopes between 1.2 and 1.46. The discrepancies are likely related to differences in vertical sensitivities but warrant further validation of both GOSAT and SCIAMACHY and an extension of the validation dataset.

N. Bellouin, J. Quaas, J.-J. Morcrette, and O. Boucher. Estimates of aerosol radiative forcing from the MACC re-analysis. Atmospheric Chemistry & Physics, 13:2045--2062, February 2013. [ bib | DOI | ADS link ]

The European Centre for Medium-range Weather Forecast (ECMWF) provides an aerosol re-analysis starting from year 2003 for the Monitoring Atmospheric Composition and Climate (MACC) project. The re-analysis assimilates total aerosol optical depth retrieved by the Moderate Resolution Imaging Spectroradiometer (MODIS) to correct for model departures from observed aerosols. The re-analysis therefore combines satellite retrievals with the full spatial coverage of a numerical model. Re-analysed products are used here to estimate the shortwave direct and first indirect radiative forcing of anthropogenic aerosols over the period 2003-2010, using methods previously applied to satellite retrievals of aerosols and clouds. The best estimate of globally-averaged, all-sky direct radiative forcing is -0.7 0.3 Wm-2. The standard deviation is obtained by a Monte-Carlo analysis of uncertainties, which accounts for uncertainties in the aerosol anthropogenic fraction, aerosol absorption, and cloudy-sky effects. Further accounting for differences between the present-day natural and pre-industrial aerosols provides a direct radiative forcing estimate of -0.4 0.3 Wm-2. The best estimate of globally-averaged, all-sky first indirect radiative forcing is -0.6 0.4 Wm-2. Its standard deviation accounts for uncertainties in the aerosol anthropogenic fraction, and in cloud albedo and cloud droplet number concentration susceptibilities to aerosol changes. The distribution of first indirect radiative forcing is asymmetric and is bounded by -0.1 and -2.0 Wm-2. In order to decrease uncertainty ranges, better observational constraints on aerosol absorption and sensitivity of cloud droplet number concentrations to aerosol changes are required.

D. Noone, C. Risi, A. Bailey, M. Berkelhammer, D. P. Brown, N. Buenning, S. Gregory, J. Nusbaumer, D. Schneider, J. Sykes, B. Vanderwende, J. Wong, Y. Meillier, and D. Wolfe. Determining water sources in the boundary layer from tall tower profiles of water vapor and surface water isotope ratios after a snowstorm in Colorado. Atmospheric Chemistry & Physics, 13:1607--1623, February 2013. [ bib | DOI | ADS link ]

The D/H isotope ratio is used to attribute boundary layer humidity changes to the set of contributing fluxes for a case following a snowstorm in which a snow pack of about 10 cm vanished. Profiles of H2O and CO2 mixing ratio, D/H isotope ratio, and several thermodynamic properties were measured from the surface to 300 m every 15 min during four winter days near Boulder, Colorado. Coeval analysis of the D/H ratios and CO2 concentrations find these two variables to be complementary with the former being sensitive to daytime surface fluxes and the latter particularly indicative of nocturnal surface sources. Together they capture evidence for strong vertical mixing during the day, weaker mixing by turbulent bursts and low level jets within the nocturnal stable boundary layer during the night, and frost formation in the morning. The profiles are generally not well described with a gradient mixing line analysis because D/H ratios of the end members (i.e., surface fluxes and the free troposphere) evolve throughout the day which leads to large uncertainties in the estimate of the D/H ratio of surface water flux. A mass balance model is constructed for the snow pack, and constrained with observations to provide an optimal estimate of the partitioning of the surface water flux into contributions from sublimation, evaporation of melt water in the snow and evaporation from ponds. Results show that while vapor measurements are important in constraining surface fluxes, measurements of the source reservoirs (soil water, snow pack and standing liquid) offer stronger constraint on the surface water balance. Measurements of surface water are therefore essential in developing observational programs that seek to use isotopic data for flux attribution.

O. Boucher and J. Quaas. Water vapour affects both rain and aerosol optical depth. Nature Geoscience, 6:4--5, January 2013. [ bib | DOI | ADS link ]

F. Forget, R. Wordsworth, E. Millour, J.-B. Madeleine, L. Kerber, J. Leconte, E. Marcq, and R. M. Haberle. 3D modelling of the early martian climate under a denser CO2 atmosphere: Temperatures and CO2 ice clouds. Icarus, 222:81--99, January 2013. [ bib | DOI | arXiv | ADS link ]

On the basis of geological evidence, it is often stated that the early martian climate was warm enough for liquid water to flow on the surface thanks to the greenhouse effect of a thick atmosphere. We present 3D global climate simulations of the early martian climate performed assuming a faint young Sun and a CO2 atmosphere with surface pressure between 0.1 and 7 bars. The model includes a detailed radiative transfer model using revised CO2 gas collision induced absorption properties, and a parameterisation of the CO2 ice cloud microphysical and radiative properties. A wide range of possible climates is explored using various values of obliquities, orbital parameters, cloud microphysic parameters, atmospheric dust loading, and surface properties. Unlike on present day Mars, for pressures higher than a fraction of a bar, surface temperatures vary with altitude because of the adiabatic cooling and warming of the atmosphere when it moves vertically. In most simulations, CO2 ice clouds cover a major part of the planet. Previous studies had suggested that they could have warmed the planet thanks to their scattering greenhouse effect. However, even assuming parameters that maximize this effect, it does not exceed +15 K. Combined with the revised CO2 spectroscopy and the impact of surface CO2 ice on the planetary albedo, we find that a CO2 atmosphere could not have raised the annual mean temperature above 0 degC anywhere on the planet. The collapse of the atmosphere into permanent CO2 ice caps is predicted for pressures higher than 3 bar, or conversely at pressure lower than 1 bar if the obliquity is low enough. Summertime diurnal mean surface temperatures above 0 degC (a condition which could have allowed rivers and lakes to form) are predicted for obliquity larger than 40deg at high latitudes but not in locations where most valley networks or layered sedimentary units are observed. In the absence of other warming mechanisms, our climate model results are thus consistent with a cold early Mars scenario in which nonclimatic mechanisms must occur to explain the evidence for liquid water. In a companion paper by Wordsworth et al. we simulate the hydrological cycle on such a planet and discuss how this could have happened in more detail.

R. Wordsworth, F. Forget, E. Millour, J. W. Head, J.-B. Madeleine, and B. Charnay. Global modelling of the early martian climate under a denser CO2 atmosphere: Water cycle and ice evolution. Icarus, 222:1--19, January 2013. [ bib | DOI | arXiv | ADS link ]

We discuss 3D global simulations of the early martian climate that we have performed assuming a faint young Sun and denser CO2 atmosphere. We include a self-consistent representation of the water cycle, with atmosphere-surface interactions, atmospheric transport, and the radiative effects of CO2 and H2O gas and clouds taken into account. We find that for atmospheric pressures greater than a fraction of a bar, the adiabatic cooling effect causes temperatures in the southern highland valley network regions to fall significantly below the global average. Long-term climate evolution simulations indicate that in these circumstances, water ice is transported to the highlands from low-lying regions for a wide range of orbital obliquities, regardless of the extent of the Tharsis bulge. In addition, an extended water ice cap forms on the southern pole, approximately corresponding to the location of the Noachian/Hesperian era Dorsa Argentea Formation. Even for a multiple-bar CO2 atmosphere, conditions are too cold to allow long-term surface liquid water. Limited melting occurs on warm summer days in some locations, but only for surface albedo and thermal inertia conditions that may be unrealistic for water ice. Nonetheless, meteorite impacts and volcanism could potentially cause intense episodic melting under such conditions. Because ice migration to higher altitudes is a robust mechanism for recharging highland water sources after such events, we suggest that this globally sub-zero, 'icy highlands' scenario for the late Noachian climate may be sufficient to explain most of the fluvial geology without the need to invoke additional long-term warming mechanisms or an early warm, wet Mars.

B. Stevens and S. Bony. Water in the atmosphere. Physics Today, 66(6):29, 2013. [ bib | DOI | ADS link ]