lmd_Li2010_bib.html

lmd_Li2010.bib

@comment{{This file has been generated by bib2bib 1.95}}
@comment{{Command line: /usr/bin/bib2bib --quiet -c 'not journal:"Discussions"' -c 'not journal:"Polymer Science"' -c '  author:"Li"  ' -c year=2010 -c $type="ARTICLE" -oc lmd_Li2010.txt -ob lmd_Li2010.bib /home/WWW/LMD/public/Publis_LMDEMC3.link.bib}}
@article{2010ClDy...34....1M,
  author = {{Marti}, O. and {Braconnot}, P. and {Dufresne}, J.-L. and {Bellier}, J. and 
	{Benshila}, R. and {Bony}, S. and {Brockmann}, P. and {Cadule}, P. and 
	{Caubel}, A. and {Codron}, F. and {de Noblet}, N. and {Denvil}, S. and 
	{Fairhead}, L. and {Fichefet}, T. and {Foujols}, M.-A. and {Friedlingstein}, P. and 
	{Goosse}, H. and {Grandpeix}, J.-Y. and {Guilyardi}, E. and 
	{Hourdin}, F. and {Idelkadi}, A. and {Kageyama}, M. and {Krinner}, G. and 
	{Lévy}, C. and {Madec}, G. and {Mignot}, J. and {Musat}, I. and 
	{Swingedouw}, D. and {Talandier}, C.},
  title = {{Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution}},
  journal = {Climate Dynamics},
  keywords = {Climate, Simulations, Ocean, Atmosphere, Coupling, Circulation, El Ni{\~n}o/Southern oscillation, North-Atlantic oscillation, Storm-tracks, Resolution},
  year = 2010,
  month = jan,
  volume = 34,
  pages = {1-26},
  abstract = {{This paper presents the major characteristics of the Institut Pierre
Simon Laplace (IPSL) coupled ocean-atmosphere general circulation model.
The model components and the coupling methodology are described, as well
as the main characteristics of the climatology and interannual
variability. The model results of the standard version used for IPCC
climate projections, and for intercomparison projects like the
Paleoclimate Modeling Intercomparison Project (PMIP 2) are compared to
those with a higher resolution in the atmosphere. A focus on the North
Atlantic and on the tropics is used to address the impact of the
atmosphere resolution on processes and feedbacks. In the North Atlantic,
the resolution change leads to an improved representation of the
storm-tracks and the North Atlantic oscillation. The better
representation of the wind structure increases the northward salt
transports, the deep-water formation and the Atlantic meridional
overturning circulation. In the tropics, the ocean-atmosphere dynamical
coupling, or Bjerknes feedback, improves with the resolution. The
amplitude of ENSO (El Ni{\~n}o-Southern oscillation) consequently
increases, as the damping processes are left unchanged.
}},
  doi = {10.1007/s00382-009-0640-6},
  adsurl = {http://adsabs.harvard.edu/abs/2010ClDy...34....1M},
  adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@article{2010BAMS...91...95H,
  author = {{Hourdin}, F. and {Musat}, I. and {Guichard}, F. and {Ruti}, P.~M. and 
	{Favot}, F. and {Filiberti*}, M.-A. and {Pham}, M. and {Grandpeix}, J.-Y. and 
	{Polcher}, J. and {Marquet}, P. and {Boone}, A. and {Lafore}, J.-P. and 
	{Redelsperger}, J.-L. and {Dell'Aquila}, A. and {Doval}, T.~L. and 
	{Traore}, A.~K. and {Gallée}, H.},
  title = {{AMMA-Model Intercomparison Project}},
  journal = {Bulletin of the American Meteorological Society},
  year = 2010,
  volume = 91,
  pages = {95},
  doi = {10.1175/2009BAMS2791.1},
  adsurl = {http://adsabs.harvard.edu/abs/2010BAMS...91...95H},
  adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@article{2010RvGeo..48.4005O,
  author = {{O'Connor}, F.~M. and {Boucher}, O. and {Gedney}, N. and {Jones}, C.~D. and 
	{Folberth}, G.~A. and {Coppell}, R. and {Friedlingstein}, P. and 
	{Collins}, W.~J. and {Chappellaz}, J. and {Ridley}, J. and {Johnson}, C.~E.
	},
  title = {{Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: A review}},
  journal = {Reviews of Geophysics},
  keywords = {Global Change: Earth system modeling (1225), Hydrology: Wetlands (0497), Global Change: Atmosphere (0315, 0325)},
  year = 2010,
  month = dec,
  volume = 48,
  eid = {RG4005},
  pages = {4005},
  abstract = {{We have reviewed the available scientific literature on how natural
sources and the atmospheric fate of methane may be affected by future
climate change. We discuss how processes governing methane wetland
emissions, permafrost thawing, and destabilization of marine hydrates
may affect the climate system. It is likely that methane wetland
emissions will increase over the next century. Uncertainties arise from
the temperature dependence of emissions and changes in the geographical
distribution of wetland areas. Another major concern is the possible
degradation or thaw of terrestrial permafrost due to climate change. The
amount of carbon stored in permafrost, the rate at which it will thaw,
and the ratio of methane to carbon dioxide emissions upon decomposition
form the main uncertainties. Large amounts of methane are also stored in
marine hydrates, and they could be responsible for large emissions in
the future. The time scales for destabilization of marine hydrates are
not well understood and are likely to be very long for hydrates found in
deep sediments but much shorter for hydrates below shallow waters, such
as in the Arctic Ocean. Uncertainties are dominated by the sizes and
locations of the methane hydrate inventories, the time scales associated
with heat penetration in the ocean and sediments, and the fate of
methane released in the seawater. Overall, uncertainties are large, and
it is difficult to be conclusive about the time scales and magnitudes of
methane feedbacks, but significant increases in methane emissions are
likely, and catastrophic emissions cannot be ruled out. We also identify
gaps in our scientific knowledge and make recommendations for future
research and development in the context of Earth system modeling.
}},
  doi = {10.1029/2010RG000326},
  adsurl = {http://adsabs.harvard.edu/abs/2010RvGeo..48.4005O},
  adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@article{2010JGRD..11523308C,
  author = {{Collins}, W.~J. and {Sitch}, S. and {Boucher}, O.},
  title = {{How vegetation impacts affect climate metrics for ozone precursors}},
  journal = {Journal of Geophysical Research (Atmospheres)},
  keywords = {Atmospheric Composition and Structure: Troposphere: composition and chemistry, Biogeosciences: Biosphere/atmosphere interactions (0315), Biogeosciences: Biogeochemical cycles, processes, and modeling (0412, 0793, 1615, 4805, 4912), Atmospheric Composition and Structure: Evolution of the atmosphere (1610, 8125), climate metrics, ozone},
  year = 2010,
  month = dec,
  volume = 115,
  number = d14,
  eid = {D23308},
  pages = {23308},
  abstract = {{We examine the effect of ozone damage to vegetation as caused by
anthropogenic emissions of ozone precursor species and quantify it in
terms of its impact on terrestrial carbon stores. A simple climate model
is then used to assess the expected changes in global surface
temperature from the resulting perturbations to atmospheric
concentrations of carbon dioxide, methane, and ozone. The concept of
global temperature change potential (GTP) metric, which relates the
global average surface temperature change induced by the pulse emission
of a species to that induced by a unit mass of carbon dioxide, is used
to characterize the impact of changes in emissions of ozone precursors
on surface temperature as a function of time. For NO$_{x}$
emissions, the longer-timescale methane perturbation is of the opposite
sign to the perturbations in ozone and carbon dioxide, so NO$_{x}$
emissions are warming in the short term, but cooling in the long term.
For volatile organic compound (VOC), CO, and methane emissions, all the
terms are warming for an increase in emissions. The GTPs for the 20 year
time horizon are strong functions of emission location, with a large
component of the variability owing to the different vegetation responses
on different continents. At this time horizon, the induced change in the
carbon cycle is the largest single contributor to the GTP metric for
NO$_{x}$ and VOC emissions. For NO$_{x}$ emissions, we
estimate a GTP$_{20}$ of -9 (cooling) to +24 (warming) depending
on assumptions of the sensitivity of vegetation types to ozone damage.
}},
  doi = {10.1029/2010JD014187},
  adsurl = {http://adsabs.harvard.edu/abs/2010JGRD..11523308C},
  adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@article{2010JCli...23.6394Z,
  author = {{Zou}, L. and {Zhou}, T. and {Li}, L. and {Zhang}, J.},
  title = {{East China Summer Rainfall Variability of 1958-2000: Dynamical Downscaling with a Variable-Resolution AGCM}},
  journal = {Journal of Climate},
  year = 2010,
  month = dec,
  volume = 23,
  pages = {6394-6408},
  doi = {10.1175/2010JCLI3689.1},
  adsurl = {http://adsabs.harvard.edu/abs/2010JCli...23.6394Z},
  adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@article{2010ACP....10.7545W,
  author = {{Woodhouse}, M.~T. and {Carslaw}, K.~S. and {Mann}, G.~W. and 
	{Vallina}, S.~M. and {Vogt}, M. and {Halloran}, P.~R. and {Boucher}, O.
	},
  title = {{Low sensitivity of cloud condensation nuclei to changes in the sea-air flux of dimethyl-sulphide}},
  journal = {Atmospheric Chemistry \& Physics},
  year = 2010,
  month = aug,
  volume = 10,
  pages = {7545-7559},
  abstract = {{The emission of dimethyl-sulphide (DMS) gas by phytoplankton and the
subsequent formation of aerosol has long been suggested as an important
climate regulation mechanism. The key aerosol quantity is the number
concentration of cloud condensation nuclei (CCN), but until recently
global models did not include the necessary aerosol physics to quantify
CCN. Here we use a global aerosol microphysics model to calculate the
sensitivity of CCN to changes in DMS emission using multiple present-day
and future sea-surface DMS climatologies. Calculated annual fluxes of
DMS to the atmosphere for the five model-derived and one observations
based present day climatologies are in the range 15.1 to 32.3 Tg
a$^{-1}$ sulphur. The impact of DMS climatology on surface
level CCN concentrations was calculated in terms of summer and winter
hemispheric mean values of {$\Delta$}CCN/{$\Delta$}Flux$_{DMS}$, which
varied between -43 and +166 cm$^{-3}$/(mg
m$^{-2}$ day$^{-1}$ sulphur), with a mean of 63
cm$^{-3}$/(mg m$^{-2}$ day$^{-1}$
sulphur). The range is due to CCN production in the atmosphere being
strongly dependent on the spatial distribution of the emitted DMS. The
relative sensitivity of CCN to DMS (i.e. fractional change in CCN
divided by fractional change in DMS flux) depends on the abundance of
non-DMS derived aerosol in each hemisphere. The relative sensitivity
averaged over the five present day DMS climatologies is estimated to be
0.02 in the northern hemisphere (i.e. a 0.02\% change in CCN for a 1\%
change in DMS) and 0.07 in the southern hemisphere where aerosol
abundance is lower. In a globally warmed scenario in which the DMS flux
increases by \~{}1\% relative to present day we estimate a \~{}0.1\% increase in
global mean CCN at the surface. The largest CCN response occurs in the
Southern Ocean, contributing to a Southern Hemisphere mean annual
increase of less than 0.2\%. We show that the changes in DMS flux and CCN
concentration between the present day and global warming scenario are
similar to interannual differences due to variability in windspeed. In
summary, although DMS makes a significant contribution to global marine
CCN concentrations, the sensitivity of CCN to potential future changes
in DMS flux is very low. This finding, together with the predicted small
changes in future seawater DMS concentrations, suggests that the role of
DMS in climate regulation is very weak.
}},
  adsurl = {http://adsabs.harvard.edu/abs/2010ACP....10.7545W},
  adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@article{2010JCli...23.3752G,
  author = {{Goubanova}, K. and {Li}, L. and {Yiou}, P. and {Codron}, F.
	},
  title = {{Relation between Large-Scale Circulation and European Winter Temperature: Does It Hold under Warmer Climate?}},
  journal = {Journal of Climate},
  year = 2010,
  month = jul,
  volume = 23,
  pages = {3752-3760},
  doi = {10.1175/2010JCLI3166.1},
  adsurl = {http://adsabs.harvard.edu/abs/2010JCli...23.3752G},
  adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@article{2010BAMS...91..611W,
  author = {{Williams}, J.~E. and {Scheele}, R. and {van Velthoven}, P. and 
	{Bouarar}, I. and {Law}, K. and {Josse}, B. and {Peuch}, V.-H. and 
	{Yang}, X. and {Pyle}, J. and {Thouret}, V. and {Barret}, B. and 
	{Liousse}, C. and {Hourdin}, F. and {Szopa}, S. and {Cozic}, A.
	},
  title = {{Global Chemistry Simulations in the AMMA Multimodel Intercomparison Project}},
  journal = {Bulletin of the American Meteorological Society},
  year = 2010,
  month = may,
  volume = 91,
  pages = {611-624},
  doi = {10.1175/2009BAMS2818.1},
  adsurl = {http://adsabs.harvard.edu/abs/2010BAMS...91..611W},
  adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@article{2010CRGeo.342..390R,
  author = {{Roca}, R. and {Bergès}, J.-C. and {Brogniez}, H. and {Capderou}, M. and 
	{Chambon}, P. and {Chomette}, O. and {Cloché}, S. and {Fiolleau}, T. and 
	{Jobard}, I. and {Lémond}, J. and {Ly}, M. and {Picon}, L. and 
	{Raberanto}, P. and {Szantai}, A. and {Viollier}, M.},
  title = {{On the water and energy cycles in the Tropics}},
  journal = {Comptes Rendus Geoscience},
  year = 2010,
  month = apr,
  volume = 342,
  pages = {390-402},
  abstract = {{The water and energy cycles are major elements of the Earth climate.
These cycles are especially active in the intertropical belt where
satellites provide the most suitable observational platform. The history
of Earth observations of the water cycle and of the radiation budget
viewed from space reveals that the fundamental questions from the early
times are still relevant for today's research. The last 2 decades have
seen a number of milestones regarding the documentation of rainfall,
mesoscale convective systems (MCS), water vapour and radiation at the
top of the atmosphere (TOA). Beyond dedicated missions that provided
enhanced characterizations of some elements of the atmospheric water
cycle and field campaigns that allowed the gathering of validation data,
the advent of the long record of meteorological satellites lead to new
questioning on the homogenisation of the data time series, etc. The use
of this record to document the tropical climate brought new results of
the distribution of humidity and reinforced the understanding of some
robust features of the African monsoon. Challenges for the immediate
future concerns the deepening of the understanding of the role of cloud
systems in the monsoon circulation, the downscaling of the documentation
of the water and energy cycle at the scale of these cloud systems, the
research of better adequation between the users and the satellite
estimate of rainfall and finally a much needed methodological effort to
build exploitable time series for the estimation of climatic trends in
the water and energy cycle in the Tropics. The required observations to
address these challenges are rapidly presented with emphasis on the
upcoming Megha-Tropiques (MT) mission.
}},
  doi = {10.1016/j.crte.2010.01.003},
  adsurl = {http://adsabs.harvard.edu/abs/2010CRGeo.342..390R},
  adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@article{2010ClDy...34..149W,
  author = {{Wu}, T. and {Yu}, R. and {Zhang}, F. and {Wang}, Z. and {Dong}, M. and 
	{Wang}, L. and {Jin}, X. and {Chen}, D. and {Li}, L.},
  title = {{The Beijing Climate Center atmospheric general circulation model: description and its performance for the present-day climate}},
  journal = {Climate Dynamics},
  year = 2010,
  month = jan,
  volume = 34,
  pages = {149-150},
  doi = {10.1007/s00382-009-0594-8},
  adsurl = {http://adsabs.harvard.edu/abs/2010ClDy...34..149W},
  adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@article{2010ClDy...34..123W,
  author = {{Wu}, T. and {Yu}, R. and {Zhang}, F. and {Wang}, Z. and {Dong}, M. and 
	{Wang}, L. and {Jin}, X. and {Chen}, D. and {Li}, L.},
  title = {{The Beijing Climate Center atmospheric general circulation model: description and its performance for the present-day climate}},
  journal = {Climate Dynamics},
  keywords = {BCC\_AGCM2.0.1, CAM3, Performance, Present climate, ERA-40 reanalysis},
  year = 2010,
  month = jan,
  volume = 34,
  pages = {123-147},
  abstract = {{The Beijing Climate Center atmospheric general circulation model version
2.0.1 (BCC\_AGCM2.0.1) is described and its performance in simulating the
present-day climate is assessed. BCC\_AGCM2.0.1 originates from the
community atmospheric model version 3 (CAM3) developed by the National
Center for Atmospheric Research (NCAR). The dynamics in BCC\_AGCM2.0.1
is, however, substantially different from the Eulerian spectral
formulation of the dynamical equations in CAM3, and several new physical
parameterizations have replaced the corresponding original ones. The
major modification of the model physics in BCC\_AGCM2.0.1 includes a new
convection scheme, a dry adiabatic adjustment scheme in which potential
temperature is conserved, a modified scheme to calculate the sensible
heat and moisture fluxes over the open ocean which takes into account
the effect of ocean waves on the latent and sensible heat fluxes, and an
empirical equation to compute the snow cover fraction. Specially, the
new convection scheme in BCC\_AGCM2.0.1, which is generated from the
Zhang and McFarlane{\rsquo}s scheme but modified, is tested to have
significant improvement in tropical maximum but also the subtropical
minimum precipitation, and the modified scheme for turbulent fluxes are
validated using EPIC2001 in situ observations and show a large
improvement than its original scheme in CAM3. BCC\_AGCM2.0.1 is forced by
observed monthly varying sea surface temperatures and sea ice
concentrations during 1949-2000. The model climatology is compiled
for the period 1971-2000 and compared with the ERA-40 reanalysis
products. The model performance is evaluated in terms of energy budgets,
precipitation, sea level pressure, air temperature, geopotential height,
and atmospheric circulation, as well as their seasonal variations.
Results show that BCC\_AGCM2.0.1 reproduces fairly well the present-day
climate. The combined effect of the new dynamical core and the updated
physical parameterizations in BCC\_AGCM2.0.1 leads to an overall
improvement, compared to the original CAM3.
}},
  doi = {10.1007/s00382-008-0487-2},
  adsurl = {http://adsabs.harvard.edu/abs/2010ClDy...34..123W},
  adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@article{2010ACP....10...79K,
  author = {{Koch}, D. and {Schulz}, M. and {Kinne}, S. and {McNaughton}, C. and 
	{Spackman}, J.~R. and {Balkanski}, Y. and {Bauer}, S. and {Berntsen}, T. and 
	{Bond}, T.~C. and {Boucher}, O. and {Chin}, M. and {Clarke}, A. and 
	{de Luca}, N. and {Dentener}, F. and {Diehl}, T. and {Dubovik}, O. and 
	{Easter}, R. and {Fahey}, D.~W. and {Feichter}, J. and {Fillmore}, D. and 
	{Freitag}, S. and {Ghan}, S. and {Ginoux}, P. and {Gong}, S. and 
	{Horowitz}, L. and {Iversen}, T. and {Kirkev{\aa}g}, A. and 
	{Klimont}, Z. and {Kondo}, Y. and {Krol}, M. and {Liu}, X. and 
	{Miller}, R. and {Montanaro}, V. and {Moteki}, N. and {Myhre}, G. and 
	{Penner}, J.~E. and {Perlwitz}, J. and {Pitari}, G. and {Reddy}, S. and 
	{Sahu}, L. and {Sakamoto}, H. and {Schuster}, G. and {Schwarz}, J.~P. and 
	{Seland}, {\O}. and {Stier}, P. and {Takegawa}, N. and {Takemura}, T. and 
	{Textor}, C. and {van Aardenne}, J.~A. and {Zhao}, Y.},
  title = {{Corrigendum to ''Evaluation of black carbon estimations in global aerosol models'' published in Atmos. Chem. Phys., 9, 9001-9026, 2009}},
  journal = {Atmospheric Chemistry \& Physics},
  year = 2010,
  month = jan,
  volume = 10,
  pages = {79-81},
  abstract = {{No abstract available.
}},
  adsurl = {http://adsabs.harvard.edu/abs/2010ACP....10...79K},
  adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}